Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed for categorical output. The objective of supervised learning is to optimize models that can predict class labels based on input features. Classification is a technique used to predict similar information based on the values of a categorical target or class variable. It is a valuable method for analyzing various types of statistical data. These algorithms have diverse applications, including image classification, predictive modeling, and data mining. This study aims to provide a quick reference guide to the most widely used basic classification methods in machine learning, with advantages and disadvantages. Of course, a single article cannot be a complete review of all supervised machine learning classification algorithms. It serves as a valuable resource for both academics and researchers, providing a guide for all newcomers to the field, thereby enriching their comprehension of classification methodologies.
Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreL’Enfer est un roman de chambre par excellence. Tous les événements s'y sont presque déroulés. Le sujet de ce roman se résume: un jeune homme quitte la campagne pour vivre à Paris .Il loue une chambre dans un hôtel. Il tombe, par un pur hasard, sur une fente dans le mur de sa par laquelle chambre il peut voir tout ce qui se passe dans la chambre voisine .L'histoire racontée par ce narrateur, est la vie intime des couples venant dans cette chambre. Il médite sur sa propre condition à la lumière de ce qui se déroule dans la chambre voisine .C'est pour cette raison,que le roman se caractérise par une stabilité.Quoi qu’elle soit manifeste, le héros démontre une mobilité à son niveau psychique. Car il y a une évolution
... Show MoreAutomation is one of the key systems in modern agriculture, providing potential solutions to the challenges related to the growing world population, demographic shifts, and economic situation. The present article aims to highlight the importance of precision agriculture (PA) and smart agriculture (SA) in increasing agricultural production and the importance of environmental protection in increasing production and reducing traditional production. For this purpose, different types of automation systems in the field of agricultural operations are discussed, as well as smart agriculture technologies including the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), big data analysis, in addition to agricultural robots,
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreThe precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show More