Preferred Language
Articles
/
kxdoYI8BVTCNdQwCKHQ_
An overview of machine learning classification techniques

Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed for categorical output. The objective of supervised learning is to optimize models that can predict class labels based on input features. Classification is a technique used to predict similar information based on the values of a categorical target or class variable. It is a valuable method for analyzing various types of statistical data. These algorithms have diverse applications, including image classification, predictive modeling, and data mining. This study aims to provide a quick reference guide to the most widely used basic classification methods in machine learning, with advantages and disadvantages. Of course, a single article cannot be a complete review of all supervised machine learning classification algorithms. It serves as a valuable resource for both academics and researchers, providing a guide for all newcomers to the field, thereby enriching their comprehension of classification methodologies.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Elderly Healthcare System for Chronic Ailments using Machine Learning Techniques – a Review

     World statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions.  This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patie

... Show More
Scopus (11)
Crossref (9)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Aug 15 2023
Journal Name
Journal Of Economics And Administrative Sciences
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Prediction of Brain Stroke at an Early Stage

     The healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
Scopus (7)
Crossref (6)
Scopus Crossref
View Publication
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
Scopus (49)
Crossref (47)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Scoping Review of Machine Learning Techniques and Their Utilisation in Predicting Heart Diseases

Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms,

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Research Journal Of Pharmacy And Technology
Iresine herbstii: An Overview

Iresineherbstii (blood leaves) is a member of the Amaranthaceae family, native to tropical and subtropical areas. It is erect herbaceous, has red and white variety. Different phytochemical constituents were detected as alkaloids, flavonoids, anthocyanins, and others. This herb was used as a pH indicator, insecticide, and dye fabrics. Traditionally it was used for divination purposes and other purposes. Iresinin IV is the major colorant. Different studies were done to evaluate the CNS, immunomodulatory, antibacterial, antiviral, cytotoxic and other effects. Fresh leaves extract was hepatotoxic. This review aimed to demonstrate the morphological features of this herb and to show the clinical studies related to its traditional use.

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication