Human skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measures the distances of pixel colors to skin tones. Results showed that the YCbCr color space performed better skin pixel detection than regular Red Green Blue images due to its isolation of the overall energy of an image in the luminance band. The RGB color space poorly classified images with wooden backgrounds or objects. Then, a histogram-based image segmentation scheme utilized to distinguish between the skin and non-skin pixels. The need for a compact skin model representation should stimulate the development of parametric models of skin detection, which is a future research direction.
In all applications and specially in real time applications, image processing and compression plays in modern life a very important part in both storage and transmission over internet for example, but finding orthogonal matrices as a filter or transform in different sizes is very complex and importance to using in different applications like image processing and communications systems, at present, new method to find orthogonal matrices as transform filter then used for Mixed Transforms Generated by using a technique so-called Tensor Product based for Data Processing, these techniques are developed and utilized. Our aims at this paper are to evaluate and analyze this new mixed technique in Image Compression using the Discrete Wavelet Transfo
... Show MoreThis research including lineament automated extraction by using PCI Geomatica program, depending on satellite image and lineament analysis by using GIS program. Analysis included density analysis, length density analysis and intersection density analysis. When calculate the slope map for the study area, found the relationship between the slope and lineament density.
The lineament density increases in the regions that have high values for the slope, show that lineament play an important role in the classification process as it isolates the class for the other were observed in Iranian territory, clearly, also show that one of the lineament hit shoulders of Galal Badra dam and the surrounding areas dam. So should take into consideration
Background and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show Morethe study including isolation and identification of candida spp causing UTIs from patintes coming to al-yarmouk hospital
Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreIn this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete
... Show MoreThis paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.