Preferred Language
Articles
/
kxapUYoBVTCNdQwCf5Sx
On modified pr-test double stage shrinkage estimators for estimate the parameters of simple linear regression model
...Show More Authors

Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
A Comparative Study for Estimate Fractional Parameter of ARFIMA Model
...Show More Authors

      Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution
...Show More Authors

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 29 2025
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparing the Sequential Nonlinear least squared Method and Sequential robust M method to estimate the parameters of Two Dimensional sinusoidal signal model:
...Show More Authors

Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust  M method after their development through the use of sequential  approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A comparison of the Semiparametric Estimators model smoothing methods different using
...Show More Authors

In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes  n=40,60,100,variances used σ2=0.5,1,1.5 the results  for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Bayes Estimators With others , for scale parameter and Reliability function of two parameters Frechet distribution
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data
...Show More Authors

In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method

View Publication Preview PDF
Crossref
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Using Truncated Test for Finding the Parameters of Single Sampling Plan under Distribution of Log-Logistic
...Show More Authors

A group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Bayesian Computational Methods of the Logistic Regression Model
...Show More Authors
Abstract<p>In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.</p>
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref