This paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained from the FE model has almost the same trend of experimental one. A case study of URM walls was conducted to investigate the influence of the wall aspect ratio on its capacity and stress distribution due to a vertical load using DMM approach. In this paper, curves obtained that show a relationship between height level and generated compressive stress of walls with different aspects ratios and the strength of each URM wall and the DMM technique that has been utilized for numerical simulation.
Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur
... Show MoreDynamic loads highly influence soil properties and may cause real damage to structures and buildings. This article reports the experimental results from 24 tests to study the settlement of flexible and rigid raft foundation with different embedment depth rested on dense sandy soil. A small scale building model of dimension 200*200 mm and 320 mm in height was performed with reinforced concrete raft foundation of 10 mm thickness for flexible raft and 23 mm for rigid raft, The shaking table technique was used to simulate the seismic effect, the shaker was sat to give three different excitation frequencies 1,2,and3 Hz and displacement amplitude equal to 13 mm, the foundation was placed at
Functional strength is one of the most important elements of physical preparation and an important physical characteristic in our daily life in general and sports training in particular, as it is the most influential characteristic in all sporting events, which the athlete must possess in order to reach the highest levels and achieve the best results. The research aimed to prepare functional strength training exercises According to the gradual increase in load in the development of some physical abilities and achievement for men's 100 meter competition runners , And to identify the effect of functional strength training according to the gradual increase in load in developing some physical abilities and achievement for men’s 100-
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreTo get access into the orbital floor 3 paths are commonly used which are transconjunctival, subciliary and subtarsal approaches. Each one of these approaches has its advantages and disadvantages. The study assessed the outcomes of the transconjunctival retroseptal approach, which reflects our experience in this type of surgery. Along 8 years, 26 patients received in the emergency room diagnosed with pure isolated orbital floor fractures, all of them admitted to the maxillofacial surgery department and approached by transconjunctival incision without lateral canthotomy. Three types of complications occurred: laceration of the lower eyelid, injury to the lacrimal system and entropion. All of these complications were managed accordingly with n
... Show More