Factor analysis is distinguished by its ability to shorten and arrange many variables in a small number of linear components. In this research, we will study the essential variables that affect the Coronavirus disease 2019 (COVID-19), which is supposed to contribute to the diagnosis of each patient group based on linear measurements of the disease and determine the method of treatment with application data for (600) patients registered in General AL-KARAMA Hospital in Baghdad from 1/4/2020 to 15/7/2020. The explanation of the variances from the total variance of each factor separately was obtained with six elements, which together explained 69.266% of the measure's variability. The most important variable are cough, idleness, fever, headache, palpebral, and difficulty in breathing. In the first factor and the variable appetite, not smelling, not to taste and diarrhea in the second factor: variables( sex, work, smoking, drinking alcohol) in the third factor, variables ( diabetes, age, pressure) in the fourth factor, variables(vomiting, heartburn ) in the fifth factor, variables(Blood group, drinking alcohol) in the sixth factor. Therefore, we must wash hands and covering mouths, or wearing a face mask when sneezing or coughing. Social distancing, disinfecting surfaces, ventilation, air-filtering, monitoring, and self-isolation are exposed or symptomatic
The internet has been a source of medical information, it has been used for online medical consultation (OMC). OMC is now offered by many providers internationally with diverse models and features. In OMC, consultations and treatments are available 24/7. The covid-19 pandemic across-the-board, many people unable to go to hospital or clinic because the spread of the virus. This paper tried to answer two research questions. The first one on how the OMC can help the patients during covid-19 pandemic. A literature review was conducted to answer the first research question. The second one on how to develop system in OMC related to covid-19 pandemic. The system was developed by Visual Studio 2019 using software object-oriented approach. O
... Show MoreThis research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV
... Show MoreThe objective of this review was to describe the COVID-19 complications after recovery.
The researchers systematically reviewed studies that reported post-COVID-19 complications from three databases: PubMed, Google Scholar and the World Health Organization (WHO) COVID-19 database. The search was conducted between 21 November 2020 and 14 January 2021. Inclusion criteria were articles written in English, with primary data, reporting complications of COVID-19 after full
This research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being 0.66975075, 0.470
... Show MoreThe Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.
... Show MoreObjective: The aim of this study is to determine the factors affecting birth space interval in a sample of women.
Methodology: A cross-sectional study conducted in primary health centers in Al-Tahade and Al- Shak Omar in
Baghdad city. Data were collected by direct interview using questionnaire especially prepared for the study.
Sample size was (415) women in age group (20-40) years who were chosen randomly.
Results: Analysis of data shows highest rate of women (31.8%) had a birth space interval of (8-12) months
followed by (26.7%) had a birth space interval of (19-24) months, (20.2%) had a birth space interval of (>24)
months and (16.1%) had a birth space interval of (13-18) months respectively, while lower rate of w
Widespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-
... Show MoreBackground: Corona virus disease 2019 (COVID-19) is a communicable disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, China, and has since spread globally, leading to an ongoing pandemic.
Aim of study: to review the clinical, lab investigation and imaging techniques, in pediatric age group affected COVID-19 to help medical experts better understand and supply timely diagnosis and treatment.
Subjects and methods: this study is a retrospective descriptive clinical study. The medical records of patients were analyzed. Information’s recorded include demographic data, exposure history, symptoms, signs, laboratory findin
... Show More