The recent studies suggested the possible toxicities or genetic alterations associated with biological and medical applications of silver nanoparticles (AgNPs). The current research is directed to see if AgNPs administration can lead to some changes in expression of BRAF gene in selected body organs tissues. Fifty-six male of musmusculs (Balb/C) mice from the animal house of Al-Nahrain Centre of Biotechnology were used. These animals were divided randomly to seven groups (eight mouse in each group), one of these groups represented the control group, three groups were subjected to different doses of AgNPs (0.25, 0.5and 1 mg/kg of body weight) for one week, and the remaining three groups were subjected to three different doses of AgNPs (0.25, 0.5and 1 mg/kg of body weight) for two weeks. Liver, spleen, brain and kidneys tissue samples from each mouse in all groups (including control group) were collected, RNA was extracted and cDNAs were synthesized and then used for real time PCR and qRT-PCR Analysis. The data generated in this study indicates that the hepatic and spleen tissues expression of BRAF gene is significantly linked to AgNPs administration, also, these data showed a high significant relation between AgNPs administration and the expression of this gene in brain and kidneys tissues
Background: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa
... Show MoreObjective: In this study ,the effects of silver nanoparticles (Ag NPs)were investigated on the liver and kidney tissues. Methodology: The produced nanoparticles have an average particle size of about 30 nm. Eighteen male albino rats were used by dividing them into three groups, each group comprise 6 rats. First group(control group) given food and water like other groups by liberty. Second group was tail injected by (AgNPs) at dose of (0.4 mg/kg. body weight/day). Third group was injected by (AgNPs) at dose of (0.6 mg/kg. body weight/day) for 15 days. All animals were sacrified at the end of experiment. The liver and kidney tissues specimens were fixed in 10% formalin and histological preparations were carried out then stained with H&E. Path
... Show MoreToday technology using nanoparticle when treatment pathogentic microorganism and we focused on this here. It was found that the species of streptococcus used in present study were sensitive to erythromycin. In present study focusing biofilm formation by Streptococcus spp was evaluated. Species S. mutans was found that highest amount of biofilm compare with the other species. The aim of report effect (SNPs) on ability of biofilm form different species of streptococcus. The anti-biofilm effect of SNPs was in concentration dependent manner. The highest effect of SNP against biofilm formation was found the concentration 160 μg/ml, while the lowest effect was found the lowest used concentration (80 μg/ml) of SNPs. In vivo study revealed that s
... Show MoreThe protozoan parasite Entamoeba histolytica is a causative agent of amoebiasis, where it causes millions of cases of dysentery and liver abscess each year. Metronidazole is a drug of choice against amoebiasis. The drug is a choice because of its efficacy and low cost, but at the same time it causes several adverse side effects; therefore, it is important to find effective medications to treat amoebiasis without any complications or any side effects. The aim of this study is to evaluate the effectiveness of different concentrations (50, 75 and 100 µg/ml) of silver nanoparticle (AgNPs) against trophozoites stages of E. histolytica in vitro. The results showed a significant decrease (p ? 0.05) in numbers of trophozoites stages after treated
... Show MoreScleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved
... Show MoreInfluence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
Sliver / Sliver chloride is as old used from human but the sliver / sliver chloride nanoparticles have only recently been recogenized. They have used in medicin and agiculture. In the present study have been investigation the effecte biosynthesis Sliver / Sliver chloride nanoparticles as antibacterial by demonstrated that Ag / AgCl NPs arrest the growth of many bacterial: S.typhimurium, k. pneumonia. S. aureus, L.monocytogenes, B. Anthracis, E. coli, C. frundi, S. Pneumonia, P. Aeruginosa. The elements compestion and crystallization panal of biosynthesized nanoparticles were chracterazated by FTIR, XRD and SEM. From XRD, It is confirmed the synthesized nanoparticles contain Sliver / Sliver chloride elements. Synthesized Ag / AgCl NPs showed
... Show More