In recent years, infectious diseases are increasingly being encountered in clinical settings. Due to the development of antibiotic resistance and the outbreak of these diseases caused by resistant pathogenic bacteria, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Recently, in this field, the application of nanoparticles is an emerging area of nanoscience and nanotechnology. For this reason, nanotechnology has a great deal of attention from the scientific community and may provide solutions to technological and environmental challenges. A common feature that these nanoparticles exhibit their antimicrobial behavior against pathogenic bacteria. In this report, we evaluate the antibacterial activity of Ag, Fe and ZnO nanoparticles against both Gram-negative (E. coli and P. aeruginosa) and Gram-positive (Staph. aureus) bacteria, using agar well diffusion method, as well as determine of minimal bactericidal concentrations by the broth dilution method. The results showed that antibacterial activities of these nanoparticles were found active against both Gram-positive and Gram-negative bacteria used in this study. Among the three nanoparticles, Ag nanoparticles have excellent bactericidal potential, while Fe nanoparticles exhibited the least bactericidal activity.
Non-thermal atmospheric pressure plasma has emerged as a
new promising tool in medicine and biology. In this work, A DBD
system was built as a source of atmospheric pressure non-thermal
Plasma suitable for clinical and biological applications. E. coli and
staphylococcus spp bacteria were exposed to the DBD plasma for a
period of time as inactivation (sterilization) process. A series of
experiments were achieved under different operating conditions. The
results showed that the inactivation, of the two kinds of bacteria, was
affected (increasing or decreasing) according to operation conditions
because they affects, as expected, the produced plasma properties
according to those conditions.
New complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, μeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, µeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, μeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNanotechnology has shown a lot of promise in the oil and gas sectors, including nanoparticle-based drilling fluids. This paper aims to explore and assess the influence of various nanoparticles on the performance of drilling fluids to make the drilling operation smooth, cost effective and efficient. In order to achieve this aim, we exam the effect of Multi Wall Carbon Nanotube and Silicon Oxide Nanoparticles as Nanomaterial to prepare drilling fluids samples.
Anew method for mixing of drilling fluids samples using Ultra sonic path principle will be explained. Our result was drilling fluids with nano materials have high degree of stability.
The results of using Multiwall Carbon Nanotube and Silicon Oxide show t
... Show MorePolycaprolactone is one of the natural biodegradable polymers mainly used in bioplastics production for packaging, usually composed of non-toxic compounds and biodegradable. The aim was to examine the role of zinc oxide (ZnO) nanopowder on the,wettability , thermal and anti-bacterial effect nanocomposites. Pure PCL and PCL-based bio- nanocomposites doped with various ratios of ZnO nanoparticles from 0% to 5wt% were prepared through the arrangement of throwing procedure. The results show that wettability properties in relation to ideal PCL and that they were increasingly hydrophobic from 57º.8 to 69º.53 because add ZnO nanocomposites,the thermal stability between 300 and 400 ° C makes them perfect for the application
... Show MoreThe Capparis spinosa L. is a species has a great interest in the field of traditional medicine for its pharmacological properties with many bioactive compounds. Our study is aiming at the recovery of this species through a phytochemical analysis and an evaluation of antibacterial and antioxidant activities of leaves of Capparis spinosa L. collected from natural habitats within the region of Al-Jadriya, Baghdad, Iraq. Phytochemical investigation demonstrated the presence of flavonoids, phenols, alkaloids, tannins, and glycosides in the methanolic extract of leaves. The quantitative analysis of total phenolic contents is being performed by Folin-Ciocalteau method and expressed in terms of gallic acid equivalents. C. spinosa exhibited progress
... Show More