this work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant decreased from 1.6 to 1.3. The loss tangent of P-Ery was very low at 400 kHz, which increased by an increase in the MnO2 content. Thermogravimetric analysis and Scanning electron microscope methods were used to investigate the thermal stability and surface analysis of the films
PVA, Starch/PVA, and Starch/PVA/sugar samples of different
concentrations (10, 20, 30 and 40 % wt/wt) were prepared by casting
method. DSC analysis was carried; the results showed only one glass
transition temperature (Tg) for the samples involved, which suggest
that starch/PVA and starch/PVA/sugar blends are miscible. The
miscibility is attributed to the hydrogen bonds between PVA and
starch. This is in a good agreement with (FTIR) results. Tg and Tm
decrease with starch and sugar content compared with that for
(PVA). Systematic decrease in ultimate strength, due to starch and
sugar ratio increase, is attributed to (PVA), which has more hydroxyl
groups that made its ultimate strength higher than that for
Nanocomposites of polymer material based on CdS as filler
material and poly methyl methacrylate (PMMA) as host matrix have
been fabricated by chemical spray pyrolysis method on glass
substrate. CdS particles synthesized by co-precipitation route using
cadimium chloride and thioacetamide as starting materials and
ammonium hydroxide as precipitating agent. The structure is
examined by X-ray diffraction (XRD), the resultant film has
amorphous structure. The optical energy gap is found to be (4.5,
4.06) eV before and after CdS addition, respectively. Electrical
activation energy for CdS/PMMA has two regions with values of
0.079 and 0.433 eV.
Fabrication of a photodetector consists of the conjugated polymer "MEH-PPV"- poly (2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenlenevinylene) and MEH-PPV:MWCNT nanocomposite thin film. The volume ratio investigated was 0.75:0.25. MEH-PPV was dissolved in chloroform solvent and doped with MWCNTs. The spin coating method was used to achieve a facile and low cost photodetector. The absorption spectrum decreases by adding the CNTs. The PL spectrum detected recombination curve results by doping the polymer with CNTs, and AFM measurement showed an increase of roughness average from (0.168 to 2.43nm) of "MEH-PPV" and "MEH-PPV:CNTs", respectively. The doping ratio 0.25, which has a higher photoresponsivity, was evaluated at 1.70 A/W and 2.14 A/W of th
... Show Morene,؛Stability constants were determined for complexes of amino acids : L-leuc tryptophane and Aspartic acid with thorium (IV ) and uranyle ( U02++) ions at ؛ serine
The rate of electron transfer from N3 sensitized by dye to TiO2 semiconductor in variety solvent have been calculated as a function of reorientation energy effective free energy , volume of semiconductor , attenuation and lattice constant of semiconductor . A very strong dependence of the electron transfer rate constant on the reorientation and effective free energy .Results of calculation indicate that TiO2 is available to use with N3 dye .Our calculation results show that a good agreement with experimental result
Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinyl] (MEH-PPV) thin films were created in this study using both spin coating and drop casting processes. MEH-PPV thin films generated by Ferric Chloride (FeCl3) doping (0.03, 0.06, 0.09, and 0.12 wt%) were studied for some physical features using Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). An FTIR test showed that there was no chemical reaction that occurred between Ferric Chloride (FeCl3) and MEH-PPV, but rather a physical one, that is, an organic material composite occurred. As for FE-SEM, the pure sample MEH-PPV formed uniformly, but when FeCl3 was added by weight, we have differ
... Show MoreIn this work, polyvinylpyrrolidone (PVP)/ Multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared with two concentrations of MWCNTs by casting method. Morphological, structural characteristics and electrical properties were investigated. The state of MWCNTs dispersion in a PVP matrix was indicated by Field Effect-Scanning Electron Microscopy (FESEM) which showed a uniform dispersion of MWCNTs within the PVP matrix. X-ray Diffraction (XRD) indicate strong bonding of carbonyl groups of PVP composite chains with MWCNTs. Fourier transfer infrared (FTIR) studies shows characteristics of various stretching and bending vibration bands, as well as shifts in some band locations and intensity changes in others. Hall effect was stu
... Show MoreIn this work, polyvinylpyrrolidone (PVP)/ Multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared with two concentrations of MWCNTs by casting method. Morphological, structural characteristics and electrical properties were investigated. The state of MWCNTs dispersion in a PVP matrix was indicated by Field Effect-Scanning Electron Microscopy (FESEM) which showed a uniform dispersion of MWCNTs within the PVP matrix. X-ray Diffraction (XRD) indicate strong bonding of carbonyl groups of PVP composite chains with MWCNTs. Fourier transfer infrared (FTIR) studies shows characteristics of various stretching and bending vibration bands, as well as shifts in some band locations and intensity changes in others. Hall effect was studied
... Show MoreIn this work, the photodetection performance of polyvinyl alcohol (PVA) nanofibers and its composite with yttrium oxide (Y2O3) at different concentrations (2.5, 5, 10) wt% are examined deposited on p-type Si with (111) orientation. Electrospinning technique was used to create nanofiber composites. Adding Y2O3 significantly impacts the PVA nanofibers where ultraviolet-visible (UV-Vis) spectroscopy optical absorption energy gap decreases with increased concentration (2.8, 2.6, and 2.3) eV. X-ray diffraction was used to investigate crystal structure, which is cubic structure. The chemical composition study was conducted using Fourier transform infrared spectroscopy (FTIR) spectra, which revealed the stretching vibrations related to the Y-O bon
... Show MoreThe development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show More