The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development. Solar and waste heat-powered humidification dehumidification (HDH) desalination systems become essential due to the severe impacts of global warming and water shortages. This problem highlights the need to apply boosted water desalination solutions. Desalination is a capital-intensive process that demands considerable energy, predominantly sourced from fossil fuels worldwide, posing a significant carbon footprint risk. HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage. Several operational and maintenance concerns are to blame. The flow and thermal balances of humidifiers and dehumidifiers under the right conditions are crucial for system efficiency. These systems comprise a humidifier and dehumidifier, energy foundations for space or process heating and electricity generation, fluid transfer or efficiency enhancement accessories, and measurement-control devices. All technologies that enhance the performance of HDH systems are elucidated in this work. These are utilizing efficient components, renewable energy, heat recovery via multi-effect and multi-stage processes, waste heat-powered, and accelerating humidification and dehumidification processes through pressure variation or employing heat pumps, in addition to exergy and economical analyses. According to the present work, the seawater HDH system is feasible for freshwater generation. Regarding economics and gain output ratio, humidification–dehumidification is a viable approach for decentralized small-scale freshwater production applications, but it needs significant refinement. System productivity of fresh water is much higher with integrated solar water heating than with solar air heating. The HDH offers the lowest water yield cost per liter and ideal system productivity when paired with a heat pump. The suggested changes aim to enhance system and process efficiency, reducing electrical energy consumption and cost-effective, continuous, decentralized freshwater production. This thorough analysis establishes a foundation for future research on energy and exergy cycles based on humidification and dehumidification.
The aim of this work is to explore the thermal performance of a tracked tubular solar still (TSS) with a parabolic trough concentrator in Baghdad (33.27° N, 44.37° E) in September 2022. The present tubular still is distinguished by its hexagonal glass cover. The effect of integrating the TSS with a heat pipe, the still tilt angle (10°, 15°), and the depth of saline water inside the still partitions on the productivity of freshwater are investigated. The results showed that using heat pipe enhances the freshwater productivity by 25%–40% and the efficiency by 25%. For the still integrated with heat pipe, as the water depth is increased from 5.5 to 6.5 cm the productivity of freshwater is incre
This work is an experimental investigation for single basin-single slope solar still coupled with an evacuated tube solar collector. The work is carried out under the climatic conditions of Baghdad city (33.2456º North and East latitude, 44.3337º longitude) through certain days of the months of the year 2019 to study the impact of using evacuated tube solar collector on the daily productivity and efficiency under the outdoors climatic conditions. It was found that using the evacuated tube solar collector increase daily productivity from 2.175 kg/ to 2.95 kg/ for 9 hours (35.63 %) for clear days, also an enhancement about 10.97 % in daily efficiency.
The research seeks to identify the comprehensive electronic banking system and the role of the auditor in light of the customer's application of electronic systems that depend on the Internet in providing its services, as a proposed audit program has been prepared in accordance with international auditing controls and standards based on the study of the customer's environment and the analysis of external and internal risks in the light of financial and non-financial indicators, the research reached a set of conclusions, most notably, increasing the dependence of banks on the comprehensive banking system for its ability to provide new and diverse banking services, The researcher suggested several recommendations, the most important of whi
... Show Morel
Many water supplies are now contaminated by anthropogenic sources such as domestic and agricultural waste, as well as manufacturing activities, the public's concern about the environmental effects of wastewater contamination has grown. Several traditional wastewater treatment methods, such as chemical coagulation, adsorption, and activated sludge, have been used to eliminate pollution; however, there are several drawbacks, most notably high operating costs, because of its low operating and repair costs, the usage of aerobic waste water treatment as a reductive medium is gaining popularity. Furthermore, it is simple to produce and has a high efficacy and potential to degrade pollu
... Show MoreThe present work is devoted to investigate the performance of a homemade Y-shape catalytic microreactor for degradation of dibenzothiophene (DBT), as a model of sulphur compounds including in gas oil, utilizing solar incident energy. The microchannel was coated with TiO2 nanoparticles which were used as a photocatalyst. Performance of the microreactor was investigated using different conditions (e.g., DBT concentration, LHSV, operating temperature, and (H2O2/DBT) ratio). Our experiments show that, in the absence of UV light, no reaction takes place. The results revealed that outlet concentration of DBT decreases as the mean residence time in the microreactor increases. Also, it was noted that operating temperature s
... Show More