Manganese dioxide rotating cylinder electrode prepared by anodic deposition on a graphite substrate using MnSO4 solution in the presence of 0.918 M of H2SO4. The influence of different operational parameters (MnSO4 concentration, current density, time, and rotation speed) on the structure, and morphology of MnO2 deposit film was examined widely. The structure and crystal size determined by X-ray diffraction (XRD), the morphology examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The γ-MnO2 obtained as the main product of the deposition process. It found that the four parameters have a significant influence on the structure, morphology, and roughness of the prepared MnO2 deposit. The crystal size increases with MnSO4 concentration, current density, and rotation speed, and decreasing with time, while the roughness decreases with increasing all of four parameters. It found that the optimum conditions used in preparing MnO2 rotating electrode that gave the smallest crystal size, low roughness and less cracking were 0.33 M of MnSO4, 6 mA/cm2, 2 h, and 200 rpm. Electrochemical oxidation of phenol in a batch reactor was carried out in the presence of NaCl to examine the performance of the prepared MnO2 electrode for degrading phenol and any organic byproducts at different current densities. The results indicate that as the current density increased from 25 to 100 mA/cm2, the chemical oxygen demand (COD) removal efficiency was increased from 59.26 to 99.90%. Kinetics and the effect of temperature on the COD disappearance have been studied. It was clear that COD decreases with time and as the temperature increases, and the value of reaction order equals to 1 as has been found.
In this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nano
... Show MoreThe new tridentate Schiff base ligand (HL)namely 2-{[1-(3-amino-phenyl)-ethylidene]-hydrazono methyl}- phenol containing (N N O)as donors atoms was prepared in two steps:Step (1): By the reaction of 3- aminoacetophenone with hydrazine monohydrate under reflux in methanol and drops of glacial acetic acid gave the intermediate compound 3-(1- hydrazono ethyl)-phenol amine.Step (2): By the reaction of 3-(1-hydrazono ethyl)-phenol amine with salicyaldehyde under reflux in methanol, gave the ligand (HL).The prepared ligand was characterized by I.R, U.V-Vis,1H- 13C NMR spectra and melting point and reacted with some metal ions under reflux in methanol with (1:1) ratio gave complexes of the general formula: [MClL]. Where: M= Mn(II), Fe(II), Co(II),
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
The biosorption of Pb (II), Cd (II), and Hg (II) from simulated aqueous solutions using baker’s yeast biomass was investigated. Batch type experiments were carried out to find the equilibrium isotherm data for each component (single, binary, and ternary), and the adsorption rate constants. Kinetics pseudo-first and second order rate models applied to the adsorption data to estimate the rate constant for each solute, the results showed that the Cd (II), Pb (II), and Hg (II) uptake process followed the pseudo-second order rate model with (R2) 0.963, 0.979, and 0.960 respectively. The equilibrium isotherm data were fitted with five theoretical models. Langmuir model provides the best fitting for the experimental results with (R2) 0.992, 0
... Show MoreThin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreThe work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing
... Show MoreNowadays, there is increased interest in the biosynthesis of microbial melanin related to their numerous biological functions and applications in many fields, especially in medical fields, including immune-modulating, antimicrobial antibiotic, antiviral antivenin, anticancer, antitumor activity, and anti-biofilm activity. Pyomelanin is a hydrophobic macromolecule that is typically dark brown or black in color, formed by the oxidative polymerization of phenolic or indolic compounds. Pyomelanin is reported to be safe for consumption, thus providing a crucial strategy for biocontrol of biofilm. Furthermore, natural pyomelanin is known as a potent antioxidant, photoprotective, and free radical scavenging. Objective: This study focuses on the
... Show More