Manganese dioxide rotating cylinder electrode prepared by anodic deposition on a graphite substrate using MnSO4 solution in the presence of 0.918 M of H2SO4. The influence of different operational parameters (MnSO4 concentration, current density, time, and rotation speed) on the structure, and morphology of MnO2 deposit film was examined widely. The structure and crystal size determined by X-ray diffraction (XRD), the morphology examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The γ-MnO2 obtained as the main product of the deposition process. It found that the four parameters have a significant influence on the structure, morphology, and roughness of the prepared MnO2 deposit. The crystal size increases with MnSO4 concentration, current density, and rotation speed, and decreasing with time, while the roughness decreases with increasing all of four parameters. It found that the optimum conditions used in preparing MnO2 rotating electrode that gave the smallest crystal size, low roughness and less cracking were 0.33 M of MnSO4, 6 mA/cm2, 2 h, and 200 rpm. Electrochemical oxidation of phenol in a batch reactor was carried out in the presence of NaCl to examine the performance of the prepared MnO2 electrode for degrading phenol and any organic byproducts at different current densities. The results indicate that as the current density increased from 25 to 100 mA/cm2, the chemical oxygen demand (COD) removal efficiency was increased from 59.26 to 99.90%. Kinetics and the effect of temperature on the COD disappearance have been studied. It was clear that COD decreases with time and as the temperature increases, and the value of reaction order equals to 1 as has been found.
Electrochemical Machining is a term given to one of nontraditional machining that uses a chemical reaction associated with electric current to remove the material. The process is depending on the principle of anodic dissolution theory for evaluating material removal during electrochemical process. In this study, the electrochemical machining was used to remove 1 mm from the length of the a workpiece (stainless steel 316 H) by immersing it in to electrolyte (10, 20 and 30 g) of NaCl and Na2SO4 to every (1 litter of filtered water). The tool used was made from copper. Gap size between the workpiece and electrode is (0.5) mm. This study focuses on the effect of the changing the type and concentration of electroly
... Show MoreThe possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied
This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain
Abstract The results of the effect of the type of feed showed a significant increase (P≤0.01) for palm fronds DM during the incubation period of 7, 14, 21 days, a high Mnp superiority in its incubation 14 days, and a significant superiority of Laccase in its incubation 21 days, while the effect of the enzyme concentration on DM was higher Significant at a concentration of 10% of the enzyme, and the interaction between the type of feed and the enzyme together showed a highly significant increase in the treated palm fronds Laccase and Lip in the incubation period of 7 days, and the treated palm fronds Mnp during incubation 14 days. %, 15% for the interaction between the type of coarse feed and the concentration of the enzyme
... Show MoreIn this paper, a theoretical analysis of optimum bed thickness operates under mass transfer control for realizing a high efficiency and reaction conversion of an electrochemical reactor has been made based on flowthrough porous electrode (FTPE) configuration. Many models have been used to represent the optimum bed thickness by taking a look into previous works concerned and collecting all related information, data, and models. The parameters that affect the optimum bed thickness have been visualized and reviewed, and almost all of them have been examined by experimental data from different sources and based on the various models. It has been found that the increase in electrolyte flow rate, concentration, limiting current density, and sp
... Show MoreThe present work aims to study the removal of dyes from wastewater by reverse osmosis process. Two dyes were used direct blue 6, and direct yellow. Experiments were performed with feed concentration (75 – 450 ppm), operation temperature (30 – 50 oC) and time (0.2 – 2.0 hr). The membrane used is thin film composite membrane (TFC). It was found that modal permeate concentration decreases with increasing feed concentration and time operating, while permeate concentration increases with increasing feed temperature. Also it was found that product rate increase with increasing temperature, but it decrease with increasing feed concentration and time. The concentration of reject solution showed an increase with increasing feed concentratio
... Show MorePolycystic ovary syndrome (PCOS) is a prevalent condition in women of reproductive age. It is characterized by androgen excess and chronic anovulation. Some trace elements, macroelements, and heavy metals have been linked to pathophysiological mechanisms of PCOS .
To study the alterations in the serum levels of the trace element manganese (Mn), some macroelements, magnesium(Mg) and calcium (Ca), and the heavy metals cadmium (Cd) and lead (Pb), in obese and non-obese PCOS patients; and the association of these alterations with some of the hormonal changes occurring in PCOS.
The study was carried out at Kamal Al-Samarrai Hospital (Center for Infertility treatment and in vitro Fertilization "IVF") Baghdad- Iraq. Eig
... Show MoreThe chemical bath deposition technique (CBD) is considered the cheapest and easiest compared with other deposition techniques. However, it is highly sensitive to effective parameter deposition values such as pH, temperature, and so on. The pH value of the reaction solution has a direct impact on both the nucleation and growth rate of the film. Consequently, this study presents a novel investigation into the effect of a precise change. in the pH reaction solution value on the structural, morphological, and photoresponse characteristics of tin monosulphide (SnS) films. The films were grown on a flexible polyester substrate with pH values of 7.1, 7.4, and 7.7. The X-ray diffraction patterns of the grown films at pH 7.1 and 7.4 confirmed
... Show MoreThis work deals with preparation of zeolite 5A from Dewekhala kaolin clay in Al-Anbar region for drying and desulphurization of liquefied petroleum gas. The preparation of zeolite 5A includes treating kaolin clay with dilute hydrochloric acid 1N, treating metakaolin with NaOH solution to prepare 4A zeolite, ion exchange, and formation. For preparation of zeolite 4A, metakaolin treated at different temperatures (40, 60, 80, 90, and 100 °C) with different concentrations of sodium hydroxide solution (1, 2, 3, and 4 N) for 2 hours. The zeolite samples give the best relative crystallinity of zeolite prepared at 80 °C with NaOH concentration 3N (199%), and at 90 and 100°C with NaOH concentration solution 2N (184% and 189%, respectively). Ze
... Show More