Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comparison to the actual observational results. ANN simulation gives a clear insight into three crescent moon visibility regions: invisible (I), probably visible (P), and certainly visible (V). The proposed ANN is suitable for building lunar calendars, so it was used to build a four-year calendar on the horizon of Baghdad. The built calendar was compared with the official Hijri calendar in Iraq.
Cloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreIn all applications and specially in real time applications, image processing and compression plays in modern life a very important part in both storage and transmission over internet for example, but finding orthogonal matrices as a filter or transform in different sizes is very complex and importance to using in different applications like image processing and communications systems, at present, new method to find orthogonal matrices as transform filter then used for Mixed Transforms Generated by using a technique so-called Tensor Product based for Data Processing, these techniques are developed and utilized. Our aims at this paper are to evaluate and analyze this new mixed technique in Image Compression using the Discrete Wavelet Transfo
... Show MoreWith the development of communication technologies for mobile devices and electronic communications, and went to the world of e-government, e-commerce and e-banking. It became necessary to control these activities from exposure to intrusion or misuse and to provide protection to them, so it's important to design powerful and efficient systems-do-this-purpose. It this paper it has been used several varieties of algorithm selection passive immune algorithm selection passive with real values, algorithm selection with passive detectors with a radius fixed, algorithm selection with passive detectors, variable- sized intrusion detection network type misuse where the algorithm generates a set of detectors to distinguish the self-samples. Practica
... Show MoreThis study was conducted with the aim to extract and purify a polyphenolic compound “ Resveratrol†from the skin of black grapes Vitis vinifera cultivated in Iraq. The purified resveratrol is obtained after ethanolic extraction with 80% v/v solution for fresh grape skin, followed by acid hydrolysis with 10% HCl solution then the aglycon moiety was taken with organic solvent
( chloroform). Using silica gel G60 packed glass column chromatography with mobile phase benzene: methanol: acetic acid 20:4:1 a
... Show MoreDiacerein (DCN) is a semi-synthetic anthraquinone derivative of Rhein that is indicated for the management of osteoarthritis. Diacerein exhibits poor dissolution in the GIT fluids and suffers from low bioavailability upon oral administration in addition to the laxative effect of Rhein metabolites. The aim of the present study was to develop novasomal vesicles with optimized entrapment efficiency and size to serve as a carrier for transdermal delivery of diacerein. Novasomal vesicles were prepared by thin film hydration method thin film hydration. The prepared vesicles were optimized utilizing different surfactant to cholesterol molar ration, sonication type, different sonication times and varying fatty acid level. The prepared vesicles were
... Show More