Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comparison to the actual observational results. ANN simulation gives a clear insight into three crescent moon visibility regions: invisible (I), probably visible (P), and certainly visible (V). The proposed ANN is suitable for building lunar calendars, so it was used to build a four-year calendar on the horizon of Baghdad. The built calendar was compared with the official Hijri calendar in Iraq.
The precursor [W] [2-(2-(naphthalen-5-yl) diazenyl)-4-amino-3-hydroxynaphthalene-1sulfonic acid] was synthesized from reaction of diazonium salt with 1-amino-2-naphtol-4sulfonic acid. Then the tridentate Schiff base ligand type ONO was synthesized from the reaction of the precursor with salicyaldehyde in 1:1 mole ratio to produce the ligand H2L [2-(2-(naphthalen5-yl) diazenyl)-4-(2-hydroxynaphthalen-3-yl)methyleneamino)-3-hydroxy salicyalene-1-sulfonic acid],the reaction achieved in methanol as a solvent under reflux. Spectroscopic methods IR, U.V, 1H,13C-NMR was used to characterize the ligand. Complexes of [CrIII, CoII, NiII and CdII] ions were also prepared through reaction of ligand with metal salts in 2:1 mole ratio at reflux,
... Show MorePoly [N-(1, 3-thiazo-2yl)]maleamic acid synthesized from corresponding monomer N-(1, 3-thiazo-2yl)maleamic acid (NTM) by using the process of electrochemical polymerization in aqueous solution at room temperature. The structure of the polymeric layer generated on the surface of (Low Carbon Steel (L.C.S)) (working electrode) was investigated by Fourier Transmission Infrared [FT-IR] and a scanning electron microscope [SEM]. The anticorrosion ability of a polymeric layer on low carbon steel (L.C.S) was investigated using a method of electrochemical polarization at temperatures ranging from (293 to 323) K, in a 3.50 percent NaCl solution. The activation parameters, both kinetic and thermodynamic for the L.C.S corrosion process were
... Show MoreThe adsorption behavior of Bismarck brown (BB) dye from aqueous solutions onto graphene oxide GO and graphene oxide-g-poly (n-butyl methacrylate-co-methacrylic acid) GO-g-pBCM as adsorbents was investigated. The prepared GO and GO-g-pBCM were characterized by Fourier transform infrared spectroscopy FTIR, which confirmed the compositions of the prepared adsorbents. Adsorption of BB dye onto GO and GO-g-pBCM was explored in a series of batch experiments under various conditions. The data were examined utilizing Langmuir and Freundlich isotherms. The Langmuir isotherm was seen as increasingly reasonable from the experimental information of dye on formulating adsorbents. Kinetic investigations showed that the experimental data were fitted ve
... Show MoreThe aim of this work is the synthesis of new Schiff base derived from PVA and Erythro-ascorbic acid derivative (pentulosono-ɣ-lactone-2,3-enedianisoate) and its metal complexes of biological significance. All synthesized compounds were characterized by Thin layer chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. The synthesized Schiff base & its metal complexes were screened for their in vitro antimicrobial activity against five pathogenic bacteria (Escherichia coli, Shigella dysentery,Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast).The biological activity ofall complexes is higher than free Schiff base ligand andf
... Show MoreAnew Schiff base (NaHL) has been prepared from the reaction between the salt of amino acid glycine with 2-hydroxy naphthaldehyde. By tridentate Schiff base of (ONO), donors were characterized by using U.V and spectrophotometer techniques. Complexes of Co(II) Ni(II) Cu(II) and Zn(II) ion with the ligand have been prepared, these complexes were identified by infrared, electronic spectral data, elemental analysis, magnetic moments, and molar conductivity measurements. It is concluded from the elemental analysis that all the complexes have (1:2) [metal:ligand] molar ratios, octahedral, with the exception to Zn(II) complex which have (1:1)[metal:ligand] molar ratio.
... Show MoreNew binuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II) Complexes of N2S2 tetradentate or N4S2 hexadentate symmetric Schiff base were prepared by the condensation of butane-1,4-diylbis(2-amino ethylcarbamodithioate) with 3-acetyl pyridine. The complexes having the general formula [M2LCl4] (where L=butane-1,4-diyl bis (2-(z)-1-(pyridine-3-ylethylidene amino))ethyl carbamodithioate, M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II)), were prepared by the reaction of the mentioned metal salts and the ligand. The resulting binuclear complexes were characterized by molar conductance, magnetic susceptibility ,infrared and electronic spectral measurements. This study indicated that Mn(II), Ni(II) and Cu(II) complexes have octahedral g
... Show MoreThe reaction of ethylenediamine with [2,4,6-trihydroxyacetophenon] and KOH (Schiff Base) to gives the new tetradentate ligand 2-(1-{2-{1-2,6-Dihydroxy-4-methyl phenyl)ethyliden amino}- ethylimino}-ethyl-benzene- 1,2,5-triol [HCl]. This ligand was reacted with some metal ions (Cu(II), Co(II), Ni(II), Zn(II), and Cd(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(H4L)], where: M= Cu(11), Co(II), Ni(II), Zn(II), and Cd(II). All compounds were characterized by spectroscopic methods [I.R, U.V.-Vis, C.H.N., analysis H.P.L.C, atomic absorption, magnetic susceptibility, (EI-mass for the ligand)], and microanalysis along with conductivity measurements
... Show More