Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.
In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
Extemporization is the ability of the actor to reflect his internal being. It gives a sort of confidence and an ability to show the personal countenance of the role away from tension and rigidity. By extemporization, it is possible to deal with and criticize the real living life so it is an intellectual, emotional, sensual, and perceptive process connected with the psychological energy and the emotional memory and all this goes under the control of the director and his instigations and instructions depending on what the text involves of intellectual, social and psychological motivators so it primarily depends on talent, chance and discussion. The research involves four chapters; the first contains the problem
... Show MoreIn petroleum reservoir engineering, history matching refers to the calibration process in which a reservoir simulation model is validated through matching simulation outputs with the measurement of observed data. A traditional history matching technique is performed manually by engineering in which the most uncertain observed parameters are changed until a satisfactory match is obtained between the generated model and historical information. This study focuses on step by step and trial and error history matching of the Mishrif reservoir to constrain the appropriate simulated model. Up to 1 January 2021, Buzurgan Oilfield, which has eighty-five producers and sixteen injectors and has been under production for 45 years when it started
... Show MoreBackground/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreImproved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval