Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.
As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreObjectives To quantify the reproducibility of the drill calibration process in dynamic navigation guided placement of dental implants and to identify the human factors that could affect the precision of this process in order to improve the overall implant placement accuracy. Methods A set of six drills and four implants were calibrated by three operators following the standard calibration process of NaviDent® (ClaroNav Inc.). The reproducibility of the position of each tip of a drill or implant was calculated in relation to the pre-planned implants’ entry and apex positions. Intra- and inter-operator reliabilities were reported. The effects of the drill length and shape on the reproducibility of the calibration process were also investig
... Show MoreIn this study, the dynamic modeling and step input tracking control of single flexible link is studied. The Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem of vibration of tip position through motion which is a characteristic of the flexible link system. The first controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based proportional-integral plus derivative (PI+D) control scheme) is developed for both vibra
... Show More An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tass
The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible parametric models and these models were nonparametric, many researchers, are interested in the study of the function of permanence and its estimation methods, one of these non-parametric methods.
For work of purpose statistical inference parameters around the statistical distribution for life times which censored data , on the experimental section of this thesis has been the comparison of non-parametric methods of permanence function, the existence
... Show MoreBuilding a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show MoreThe CIGS/CdS p-n junction thin films were fabricated and deposited at room temperature with rate of deposition 5, and 6 nm secG1 , on ITO glass substrates with 1mm thickness by thermal evaporation technique at high vacuum pressure 2×10G5 mbar, with area of 1 cm2 and Aluminum electrode as back contact. The thickness of absorber layer (CIGS) was 1 µm while the thickness of the window layer CdS film was 300 nm. The X-ray Diffraction results have shown that all thin films were polycrystalline with orientation of 112 and 211 for CIGS thin films and 111 for CdS films. The direct energy gaps for CIGS and CdS thin films were 1.85 and 2.4 eV, respectively. Atomic Force Microscopy measurement proves that both films CIGS and CdS films have nanostru
... Show More