Preferred Language
Articles
/
kRhqLJQBVTCNdQwChgOI
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 27 2023
Journal Name
Journal Of Periodontal Research
Ability of gingival crevicular fluid volume, E‐cadherin, and total antioxidant capacity levels for predicting outcomes of nonsurgical periodontal therapy for periodontitis patients
...Show More Authors
Abstract<sec><title>Objectives

To determine the potential of gingival crevicular fluid (GCF) volume, E‐cadherin and total antioxidant capacity (TAC) levels to predict the outcomes of nonsurgical periodontal therapy (NSPT) for periodontitis patients.

Background

NSPT is the gold‐standard treatment for periodontal pockets < 6 mm in depth, however, successful outcomes are not always guaranteed due to several factors. Periodontitis‐associated tissue destruction is evidenced by the increased level of soluble E‐cadherin and reduced antioxidants in oral fluids which could be used as predictors for success/failure of N

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
A Viscoplastic Modeling for Permanent Deformation Prediction of Rubberized and Conventional Mix Asphalt
...Show More Authors

View Publication
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Geological Journal
A Predictive Model for Estimating Unconfined Compressive Strength from Petrophysical Properties in the Buzurgan Oilfield, Khasib Formation, Using Log Data
...Show More Authors

Unconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute

... Show More
View Publication
Crossref
Publication Date
Fri Jan 31 2020
Journal Name
Iraqi Geological Journal
ESTIMATION OF SHEAR WAVE VELOCITY FROM WIRELINE LOGS DATA FOR AMARA OILFIELD, MISHRIF FORMATION, SOUTHERN IRAQ
...Show More Authors

Shear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
A Realistic Aggregate Load Representation for A Distribution Substation in Baghdad Network
...Show More Authors

Electrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Improvement of Traffic Movement for Roads Network in Al-Kadhimiya City Center
...Show More Authors

Numerous regions in the city of Baghdad experience the congestion and traffic problems. Due to the religious and economic significance, Al-Kadhimiya city (inside the metropolitan range of Baghdad) was chosen as study area. The data gathering stage was separated into two branches: the questionnaire method which is utilized to estimate the traffic volumes for the chosen roads and field data collection method which included video recording and manual counting for the volumes entering the selected signal intersections. The stage of analysis and evaluation for the seventeen urban roads, one highway, and three intersections was performed by HCS-2000 software.The presented work plots a system for assessing the level of service

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
American Standard Code for Information Interchange mapping technique for text hiding in the RGB and gray images
...Show More Authors

Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Obstacles Avoidance for Mobile Robot Using Enhanced Artificial Potential Field
...Show More Authors

In this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Second Order Sliding Mode Controller Design for Pneumatic Artificial Muscle
...Show More Authors

In this paper, first and second order sliding mode controllers are designed for a single link robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model for the arm has been developed based on the model of large scale pneumatic muscle actuator model. Uncertainty in parameters has been presented and tested for the two controllers. The simulation results of the second-order sliding mode controller proves to have a low tracking error and chattering effect as compared to the first order one. The verification has been done by using MATLAB and Simulink software.

 

View Publication Preview PDF