Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.
Diesel generators is widely used in Iraq for the purpose of maintaining electric power demand. Large number of operators engaged in this work encounters high level of noise generated by back pack type diesel generators used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known., in present research , quastionaire was adsministered 86 repondents in Baghdad city were exposured to wide range of noise level (80-110) dB(A) with different ages and they have different skill discretion levels. Noise levels A-weigthed decibles dB(A) were measured over 8 weeks two times aday during the 2019 summer using a sound level meter.For predicting the wo
... Show MoreThis study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope
The aim of the current research is to verify the effect of the cognitive modeling strategy on the achievement of the chemistry course for the students of the first intermediate grade. To achieve the objective of the research, the null hypothesis was formulated via cognitive modeling strategy. The results showed that the experimental group's students performed better than the students in the control group. In the light of the results, the researchers concluded: The impact of the cognitive modeling strategy in the achievement of students of first intermediate grade in chemistry.
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this study, we design narrow band pass filter for window (3_5) ?m dependent on the needle optimization method , and a comparison with global designs published -Also, the effect of change parameter design on the optical performance of filter was studded and being able to overcome the difficulties of the design.In this study, the adoption of homogeneous optical properties materials as thin film depositing on a substrate of germanium at wavelength design (? = 4 ?m). For design this kind of filters we used advanced computer program (Matlab )to build a model design dependent both matrix characteristic and Needle technique. In this paper we refer to the type of Mert function , which is used for correct optical performance acces
... Show More