Preferred Language
Articles
/
kRhqLJQBVTCNdQwChgOI
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 22 2021
Journal Name
Journal Of Petroleum Exploration And Production Technology
4D Finite element modeling of stress distribution in depleted reservoir of south Iraq oilfield
...Show More Authors
Abstract<p>The harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are</p> ... Show More
View Publication
Scopus (15)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem</p> ... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Density and Approximation by Using Feed Forward Artificial Neural Networks
...Show More Authors

I n  this  paper ,we 'viii  consider  the density  questions  associC;lted with  the single  hidden layer feed forward  model. We proved  that a FFNN   with   one   hidden   layer  can   uniformly   approximate   any continuous  function  in C(k)(where k is a compact set in R11 ) to any required accuracy.

 

However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function  non-dense, then we  need more  hidden layers. Also, we have shown  that there exist  localized functions and that there is no t

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Reduction of the error in the hardware neural network
...Show More Authors

Specialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Comparison Study of Electromyography Using Wavelet and Neural Network
...Show More Authors

In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.

View Publication Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Estimation and Improvement of Routing Protocol Mobile Ad-Hoc Network Using Fuzzy Neural Network
...Show More Authors

Ad-Hoc Networks are a generation of networks that are truly wireless, and can be easily constructed without any operator. There are protocols for management of these networks, in which the effectiveness and the important elements in these networks are the Quality of Service (QoS). In this work the evaluation of QoS performance of MANETs is done by comparing the results of using AODV, DSR, OLSR and TORA routing protocols using the Op-Net Modeler, then conduct an extensive set of performance experiments for these protocols with a wide variety of settings. The results show that the best protocol depends on QoS using two types of applications (+ve and –ve QoS in the FIS evaluation). QoS of the protocol varies from one prot

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Modeling The Power Grid Network Of Iraq
...Show More Authors

Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Apr 01 2009
Journal Name
International Journal Of Applied Environmental Sciences
An expert System for Predicting the Effects of Noise Pollution on Grass Trimming Task Using Fuzzy Modeling
...Show More Authors

Grass trimming operation is widely done in Malaysia for the purpose of maintaining highways. Large number of operators engaged in this work encounters high level of noise generated by back pack type grass trimmer used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known. For predicting the work efficiency deterioration, fuzzy tool has been used in present research. It has been established that a fuzzy computing system will help in identification and analysis of fuzzy models fuzzy system offers a convenient way of representing the relationships between the inputs and outputs of a system in the form of IF-THEN rules. The paper presents

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref