In this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thioglycolic acid. A variety of techniques, including mass spectroscopy, 1H NMR, 13C NMR, and FT-IR, were employed to find novel compounds, which exhibited mild antibacterial activity against four kinds of bacteria according to the biological results. The effectiveness of the thiazolidinone derivatives against Candida albicans was mediocre. The compounds showed stretching absorption bands at 1625-1639 cm-1, belonging to azomethine groups, and the amine-induced loss of absorption bands at 3392, 3311 cm-1. Schiff bases exhibited singlet signals at δ (8.33-8.87) ppm for azomethine groups and signals at 150.67-150.75 ppm for carbon by 1H NMR and 13C NMR. Thiazolidinone compounds showed stretching absorption bands at 1701-1708 cm-1 due to the lactam ring carbonyl group. The signals at (170.99-171.19) ppm are affording to the carbon carbonyl group of the lactam ring for thiazolidinone compounds. For citation: Abbas Z.M., Rumez R.M. Synthesis, Characterization and screening of antimicrobial activity for some new Schiff bases and thiazolidinone derivatives derived from aromatic carboxylic acid. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 7. P. 27-34. DOI: 10.6060/ivkkt.20256807.7189.
The current work reports a new Schiff base [N1-benzylidenebenezene-1,2-diamine(L) = C20H16N2] has been synthesized from benzaldehyde (C6H5CHO) and O- aminoaniline (O-C6H4(NH2)2. Metal mixed ligand complexes of the Schiff base were prepared from chloride salts of Zn(II), Cd(II) and Hg(II) in ethanol and 8-hydroxyquinoline(8HQ)(C9H7NO) containing sodium hydroxide. All the complexes were characterized on the basis of their; FT-IR and U.V spectra, melting point, molar conductance, and determination of the percentage of the metal in the complexes by flame (AAS). In the all complexes, (8HQ) behaves as a bidentate ligand as primary ligand through –-OH phenolic group and –N groups of pyridine group. Also, the prepared ligand (L) was bidentate i
... Show More4-[(2-hydroxy-4,6-dimethylphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one has been readied by combination the diazonium salt of 4-aminoantipyrine with 3,5-dimethylphenol. Spectral studies ( FTIR, UV-Vis, 1H and 13CNMR) and microelemental analysis (C.H.N) are use to identified of the ligand. Complexes of some transition metals were performed as well depicted. The formation of complexes were characterized by using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4 - 3×10-4 M/L). height m
... Show More(E)-2-(benzo[d]thiazol-2-yliazenyl)-4-methoxyaniline was synthesized by reaction the diazonium salt of 2-aminobenzothiazole with 4-methoxyaniline. Identified of the ligand by spectral techniques (UV-Vis, FTIR,1HNMR and LC-Mass) and microelemental analysis (C.H.N.S.O) are used to produce of the azo ligand. Complexes of (Co2+, Ni2+, Cu2+ and Zn2+) were synthesized and identified using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4-3×10-4 mole/L). height molar absorptivity of compound solutions h
... Show MoreNew nitrone and selenonitrone compounds were synthesized. The condensation method between N-(2-hydroxyethyl) hydroxylamine and substituted carbonyl compounds such as [benzil, 4, 4́-dichlorobenzil and 2,2́ -dinitrobenzil] afforded a variety of new nitrone compounds while the condensation between N-benzylhydroxylamine and substituted selenocarbonyl compounds such as [di(4-fluorobenzoyl) diselenide and (4-chlorobenzoyl selenonitrile] obtained selenonitrone compounds. The condensation of N-4-chlorophenylhydroxylamine with dibenzoyl diselenide obtained another type of selenonitrone compounds. The structures of the synthesized compounds were assigned based on spectroscopic data (FT-IR,
... Show MoreIn this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.
