In this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thioglycolic acid. A variety of techniques, including mass spectroscopy, 1H NMR, 13C NMR, and FT-IR, were employed to find novel compounds, which exhibited mild antibacterial activity against four kinds of bacteria according to the biological results. The effectiveness of the thiazolidinone derivatives against Candida albicans was mediocre. The compounds showed stretching absorption bands at 1625-1639 cm-1, belonging to azomethine groups, and the amine-induced loss of absorption bands at 3392, 3311 cm-1. Schiff bases exhibited singlet signals at δ (8.33-8.87) ppm for azomethine groups and signals at 150.67-150.75 ppm for carbon by 1H NMR and 13C NMR. Thiazolidinone compounds showed stretching absorption bands at 1701-1708 cm-1 due to the lactam ring carbonyl group. The signals at (170.99-171.19) ppm are affording to the carbon carbonyl group of the lactam ring for thiazolidinone compounds. For citation: Abbas Z.M., Rumez R.M. Synthesis, Characterization and screening of antimicrobial activity for some new Schiff bases and thiazolidinone derivatives derived from aromatic carboxylic acid. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2025. V. 68. N 7. P. 27-34. DOI: 10.6060/ivkkt.20256807.7189.
In this study, chalcones were synthesis by condensing 2-acetylpyridine with aromatic aldehyde derivatives in dilute ethanolic potassium hydroxide solution at room temperature according to Claisen-Schmidt condensation. After that, new heterocyclic derivatives such as Oxazine, Thiazine and Pyrazol were synthesis by reaction between chalcones with urea, thiourea and hydrazine hydrate respectively scheme 1. All these compounds wrer characterization by FTIR, 1H-NMR spectroscopy and elemental analysis.
A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5,6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro(carboxylic)methylidene]-5,6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl(6-methyl-2-pyridylmethyl)amine to create a new ligand (ONMILA). This novel ligand was identified using a number
... Show More2,2'-(1-(3,4-bis(carboxydichloromethoxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl)bis(oxy)bis(2,2-dichloroacetic acid) a derivative of L-ascorbic acid was prepared by reaction of L-ascorbic acid with trichloroacetic acid (1:4) ratio, in the presence of potassium hydroxide. A series of new metal complexes of this ligand were prepared by a reaction with the chlorides of Cd(II), Co(II), Ni(II), Cu(II) and Zn(II). The new ligand and its complexes were identified by C.H.N., IR, UV-visible spectra, Thermogravimetric analysis (TGA), as well as 1H, 13C-NMR and Mass spectra for ligand L. The complexes were also identified by molar conductance, atomic absorption, magnetic susceptibility and X-ray diffraction for Cu (II) complex. FT-IR spectra
... Show MorePathogenic microorganisms are becoming more and more resistant to antimicrobial agents. So the synthesis of new antimicrobial agents is very important. In this work, new 5-fluoroisatin-chalcone conjugates 5(a–g) were synthesized based on previous research that showed the modifications of the isatin moiety led to the synthesis of many derivatives that have antimicrobial activity. 4-aminoacetophenone reacts with 5-fluoroisatin to form Schiff base (3), which in turn reacts with two different groups of aromatic (carbocyclic and heterocyclic) aldehydes 4(a–g) separately to form the final compounds 5(a–g). Proton-nuclear magnetic resonance (¹H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy were used to confirm the chemic
... Show MoreIn this study, new derivatives of Schiff bases of 2-thio-5-aryl1,3,4-oxadiazole have been synthesized. The structures of these derivatives were characterized from their melting points, infrared spectroscopy and elemental analysis. The Schiff bases derivatives were tested for inhibition of E-coli and were all found to be active.
Two compounds,[2-amino-4-(4-nitro phenyl) 1,3-thiazole],(4) and [2-amino-4-(4-bromo phenyl) 1,3-thiazole],(5), were synthesized by refluxing thiourea (1) with each of para-ntiro and para-bomophanacyl bromides(2) and (3) respectively, in absolute methanol. Then, by reaction of [5] with 3,5-dinitrobenzoyl chloride in dimethylformamide (DMF) yielded (6) .On the other hand, reaction of (4) with chloroacetyl chloride in dry benzene afforded (7), which is upon treatment with thiourea in absolute methanol, af
... Show MoreAbstract As a part of our ongoing project on the design and synthesis of new 4-thiazolidinone derivatives with antimicrobial activity, four new 4-thiazolidinone derivatives carrying bromo, nitro, methyl, and chloro groups on the benzene ring were synthesized by starting with the 7-amino-4-methylcoumarin moiety, linking coumarin with various phenyl isothiocynate to form the thiourea group, and then cyclizing the derivatives, characterized by IR and 1HNMR, and assayed in vitro for their antimicrobial activity against Gram positive and Gram negative bacteria and fungi. Overall, 2-(4-methyl-2-oxo-2H-chromen-3-yl)-3-(4-nitrophenyl) thiazolidin-4-one to be the most powerful individuals in the series. Based on the observed data, it can be sta
... Show MoreA new ligand 2,3-dihydrobenzo [d] thiazole-2-carboxylic acid (L) has been prepared from the reaction of ortho amino phenyl thiol with dichloroacetic acid in mole ratio (1:1). It has been characterized by elemental analysis (C.H.N.), IR, UV- Vis.spectraand 1H, 13C-NMR. A new series complexes of the bivalent ions (Co, Ni, Cu, Pd, Cd, Hg and Pb) and the trivalent (Cr) have been prepared and characterized too. The structural has been established by elemental analysis (C.H.N.), IR, UV-Vis. spectra, molar conductivity, atomic absorption and magnetic susceptibility measurements. The synthesized complexes were prepared in (1:2) ratio correspond to (Co(II), Ni(II), Cu(II), Pd(II), Cd(II), Hg(II) and Pb(II) complexes while in case Cr(III) complex is
... Show MoreA first step in this research was to synthesize Schiff's bases(1-3)using an Amoxcilline intensification reaction with different aromatic aldehydes in absolute ethanol. In benzene and refluxing conditions,Schiff's bases were cyclized with succinic and Phthalic anhydride to give a new sequence of 1,3-oxazepine derivatives(4-6) and (7-9),respectively.The last step,cyclization reactions with sodium azide in THF solvent resulted in the formation of [10 and 11], which are supposed to be biologically significant.FT.IR, 1H-NMR and 13C-NMR (for compound 4,7,9, and 11),as well as melting points reported, were used to characterize these prepared compounds ,Bacillus (G+), Staphylococcus (G+), and E.Coli (G-)were screened against these compounds. . To i
... Show More