The phytoremediation technique has become very efficient for treating soil contaminated with heavy metals. In this study, a pot experiment was conducted where the Dodonaea plant (known as hops) was grown, and soil previously contaminated with metals (Zn, Ni, Cd) was added at concentrations 100, 50, 0 mg·kg-1 for Ni and Zn, and at concentrations of 0, 5, 10 mg·kg-1 for cadmium. Irrigation was done within the limits of the field capacity of the soil. Cadmium, nickel and zinc was estimated in the soil to find out the capacity of plants to the absorption of heavy and contaminated metals by using bioconcentration factors (BCFs), bioaccumulation coefficient (BAC) and translocation factor (TF). Additionally, BCF values of both Ni and Zn were less than one i.e. Dodonaea hazing moderate bioaccumulation properties based on heavy metals. As for BCF values of Cd, they have by passed, i.e. Dodonaeahas the ability to the absorption of cadmium sulfate in the root system. Regarding the bioaccumulation coefficient (BAC) values for Cd, Ni, and Zn, it was found that they were generally below one, indicating that Dodonaea exhibits moderate capabilities for bioaccumulating these heavy metals. Therefore, Dodonaea plant is useful in treating heavy metals. Highlighting a pioneering approach, this study introduces a novel method that significantly advances the understanding of phytoremediation’s role in reducing pollution caused by various industries working on the soil, specifically through the use of Dodonaea in the T3 treatment group, which showed remarkable efficacy on metal-contaminated soi
The primary objective of the current paper is to suggest and implement effective computational methods (DECMs) to calculate analytic and approximate solutions to the nonlocal one-dimensional parabolic equation which is utilized to model specific real-world applications. The powerful and elegant methods that are used orthogonal basis functions to describe the solution as a double power series have been developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli polynomials. Hence, a specified partial differential equation is reduced to a system of linear algebraic equations that can be solved by using Mathematica®12. The techniques of effective computational methods (DECMs) have been applied to solve some s
... Show MoreMultiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show Moresummary
In this search, we examined the factorial experiments and the study of the significance of the main effects, the interaction of the factors and their simple effects by the F test (ANOVA) for analyze the data of the factorial experience. It is also known that the analysis of variance requires several assumptions to achieve them, Therefore, in case of violation of one of these conditions we conduct a transform to the data in order to match or achieve the conditions of analysis of variance, but it was noted that these transfers do not produce accurate results, so we resort to tests or non-parametric methods that work as a solution or alternative to the parametric tests , these method
... Show MoreAbstract
The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of
... Show MoreThis research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3
... Show MorePorosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show MorePermeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.
A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u
... Show MoreIn this study used three methods such as Williamson-hall, size-strain Plot, and Halder-Wagner to analysis x-ray diffraction lines to determine the crystallite size and the lattice strain of the nickel oxide nanoparticles and then compare the results of these methods with two other methods. The results were calculated for each of these methods to the crystallite size are (0.42554) nm, (1.04462) nm, and (3.60880) nm, and lattice strain are (0.56603), (1.11978), and (0.64606) respectively were compared with the result of Scherrer method (0.29598) nm,(0.34245),and the Modified Scherrer (0.97497). The difference in calculated results Observed for each of these methods in this study.
This research aims to identify the reality of teaching political science research methods curriculum, to observe practices, and differences in teaching and learning between the Arab and Western universities. Moreover, it focuses on the difficulties that face students' acquisition of the course skills. The research uses the course model of some Western and Arab universities as case study.
This research shows that the curriculum do not reach yet the final form as other political science curriculums, and its upcoming changes will reflect the needs of stakeholders. The best method to teach this curriculum is to use applied learning in groups, learning by doing, and finally problem-based learning approach. Using optimal assessment deep
... Show More