To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which shows the reliability and applicability of the proposed approach.
The main objective of this research is to find the coefficient of permeability (k) of the soil and especially clayey soil by finding the degree of consolidation (rate of consolidation). New modify procedure is proposed by using the odometer (consolidation) device. The ordinary conventional permeability test usually takes a long time by preparing and by testing and this could cause some problems especially if there is a need to do a large number of this test and there were a limited number of technicians and/or apparatus. From this point of view the importance of this research is clear, since the modified procedure will require a time of 25 minute only. Derivation made to produce an equation which could be used to fined the permeabi
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreEquation Boizil used to Oatae approximate value of bladder pressure for 25 healthy people compared with Amqas the Alrotinahh ways used an indirect the catheter Bashaddam and found this method is cheap and harmless and easy
This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
The research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show More