Preferred Language
Articles
/
kRecQo8BVTCNdQwC7Wfg
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus
Publication Date
Thu Dec 26 2019
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
THE DIURNAL BIRDS OF PREY (RAPTORS) IN THE MESOPOTAMIAN MARSHES OF SOUTHERN IRAQ WITH NOTES ON THEIR CONSERVATION STATUS
...Show More Authors

Birds of prey (Raptors) are top predator avian species that many migrate annually through Mesopotamian marshes in southern Iraq toward their wintering grounds in Arabia and Africa, while others are breeding residents; however, information on their current status is scarce. From January 2016 to April 2019, a total of 20 field expeditions were conducted in the geographical zone of the Mesopotamian marshes, wetlands of international importance. The survey covered the Central Marshes, Al-Hammar and Hawizeh Marsh. One of the objectives of the field surveys is to list the raptors species that wintering and/or migrating through the Mesopotamian marshes and to understand their current spatial and temporal distribution. In the present study, a to

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (10)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
2018 Ieee/acs 15th International Conference On Computer Systems And Applications (aiccsa)
Utilizing Hopfield Neural Network for Pseudo-Random Number Generator
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Minar International Journal Of Applied Sciences And Technology
INNOVATE GESTATIONAL AGE ESTIMATION MODEL FOR IRAQI FETUSES BASED ON ULTRASOUND IMAGES MEASUREMENTS
...Show More Authors

Imaging by Ultrasound (US) is an accurate and useful modality for the assessment of gestational age (GA), estimation fetal weight, and monitoring the fetal growth during pregnancy, is a routine part of prenatal care, and that can greatly impact obstetric management. Estimation of GA is important in obstetric care, making appropriate management decisions requires accurate appraisal of GA. Accurate GA estimation may assist obstetricians in appropriately counseling women who are at risk of a preterm delivery about likely neonatal outcomes, and it is essential in the evaluation of the fetal growth and detection of intrauterine growth restriction. There are many formulas are used to estimate fetal GA in the world, but it's not specify fo

... Show More
View Publication
Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression using Hierarchal Linear Polynomial Coding
...Show More Authors

Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Mechanical and Physiochemical Properties of Central Marshes Bed Soils – Southern Iraq
...Show More Authors

The central marshes are one of the most important wetlands/ecosystems in the southern area of Iraq. This study evaluates the bed soil's mechanical, physical, and chemical properties at certain southern Iraqi central marshes sites. This was conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops and for construction purposes. Soil samples were collected from 15 sites at 10-100 cm depth. Hence, numerous parameters were determined: index properties, unconfined compressive strength, direct shear strength, consolidation, texture, and sieve analysis, water content, specific gravity, dry density, permeability, pH, total soluble salts (TSS), organic materials (OM) and total

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Using Remote Sensing and GIS in Measuring Vegetation Cover Change from Satellite Imagery in Mosul City, North of Iraq
...Show More Authors
Abstract<p>The aim of the study is the assessment of changes in the land cover within Mosul City in the north of Iraq using Geographic Information Systems (GIS) and remote sensing techniques during the period (2014-2018). Satellite images of the Landsat 8 on this period have been selected to classify images in order to measure normalized difference vegetation index (NDVI) to assess land cover changes within Mosul City. The results indicated that the vegetative distribution ratio in 2014 is 4.98% of the total area under study, decreased to 4.77% in 2015 and then decreased to 4.54 <italic>%</italic> in 2016, after then decreased to 3,59% in 2017,then increased to 4.39% in 2018. Land cove</p> ... Show More
View Publication
Scopus (18)
Crossref (10)
Scopus Crossref