Preferred Language
Articles
/
kRecQo8BVTCNdQwC7Wfg
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Intelligent Systems And Internet Of Things
Enhancing Convolutional Neural Network for Image Retrieval
...Show More Authors

With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Non-Diatomic Diversity and Community Structure in Hoor-Al- Azime Marshes, Iran
...Show More Authors
Abstract<p>This study was conducted to delineate diversity and species composition of non-diatoms planktonic algae in Hoor- Al- Azime marshes, Iran. The samples were collected from four sites at monthly basis from April 2011 to March 2012. A total 88 taxa were identified, out of which (40 taxa, 45.45%) belonging to Cyanophyta followed by Chlorophyta (29 taxa, 32.96%), Euglenophyta (18 taxa, 20.45%) and (1 taxa, 1.14%) of Dinophyta recorded. Comparing species richness (65 taxa, 34.76%) at Shat- Ali (St4) was the highest and the lowest (34 taxa, 18.18%) was observed at Rafi (St2). Species occurrence was associated with temperature where in summer (66 taxa) and (25 taxa) encountered winter. The phy</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Classification & Evaluation of Evidence of deprivation in Iraq (2009) by using Cluster analysis
...Show More Authors

       The study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology &amp; Innovation
The use of Artificial Neural Network (ANN) for modeling of Cu (II) ion removal from aqueous solution by flotation and sorptive flotation process
...Show More Authors

View Publication
Scopus (33)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Calculation of Salinity and Soil Moisture indices in south of Iraq - Using Satellite Image Data
...Show More Authors

A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).

View Publication
Scopus (10)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
A Crime Data Analysis of Prediction Based on Classification Approaches
...Show More Authors

Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Jul 18 2022
Journal Name
Ieee Access
Moderately Multispike Return Neural Network for SDN Accurate Traffic Awareness in Effective 5G Network Slicing
...Show More Authors

Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi

... Show More
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Jul 15 2024
Journal Name
2024 46th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Automatic COVID-19 Detection from Chest X-ray using Deep MobileNet Convolutional Neural Network
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jun 03 2025
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Comparison of some artificial neural networks for graduate students
...Show More Authors

Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer

... Show More
View Publication
Crossref (1)
Crossref