Preferred Language
Articles
/
kReUXJIBVTCNdQwCQa1O
A high performance parallel Radon based OFDM transceiver design and simulation
...Show More Authors

major goal of the next-generation wireless communication systems is the development of a reliable high-speed wireless communication system that supports high user mobility. They must focus on increasing the link throughput and the network capacity. In this paper a novel, spectral efficient system is proposed for generating and transmitting twodimensional (2-D) orthogonal frequency division multiplexing (OFDM) symbols through 2- D inter-symbol interference (ISI) channel. Instead of conventional data mapping techniques, discrete finite Radon transform (FRAT) is used as a data mapping technique due to the increased orthogonality offered. As a result, the proposed structure gives a significant improvement in bit error rate (BER) performance. The new structure was tested and a comparison of performance for serial one-dimensional (1-D) Radon based OFDM and parallel 2-D Radon based OFDM is made under additive white Gaussian noise (AWGN), flat, and multi-path selective fading channels conditions. It is found that Radon based parallel 2-D OFDM has better speed and performance than serial 1-D Radon based OFDM.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 01 2024
Journal Name
Materials Science In Semiconductor Processing
Rational design of novel 0D/0D Bi2Sn2O7/CeO2 in the core-shell nanostructure for boosting the photocatalytic decomposition of antibiotics in wastewater: S-type-based mechanism
...Show More Authors

View Publication
Scopus (24)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Wed Apr 30 2025
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Solar Granulation Dynamics Using Optical Correction Techniques
...Show More Authors

High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 04 2016
Journal Name
Baghdad Science Journal
Estimating Parametersof Gumbel Distribution For Maximum Values By using Simulation
...Show More Authors

In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Three-Dimensional Explicit Finite Element Simulation of Piled-Raft Foundation
...Show More Authors

This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.

The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Ice Melting Using the Finite Volume Method
...Show More Authors

The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Photoacoustic Imaging for Tumor Detection: An in vitro Simulation Study
...Show More Authors

Photoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of flow in pipe with cross jet effects
...Show More Authors

A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Iraqi Journal Of Science
Simulation of Solar Coronal Magnetic Field Using Potential Field Model
...Show More Authors

In this paper, 3D simulation of the global coronal magnetic field, which use observed line of sight component of the photosphere magnetic field from (MDI/SOHO) was carried out using potential field model. The obtained results, improved the theoretical models of the coronal magnetic field, which represent a suitable lower boundary conditions (Bx, By, Bz) at the base of the linear force-free and nonlinear force free models, provides a less computationally expensive method than other models. Generally, very high speed computer and special configuration is needed to solve such problem as well as the problem of viewing the streamline of the magnetic field. For high accuracy special mathematical treatment was adopted to solve the computation comp

... Show More
Publication Date
Thu May 06 2021
Journal Name
Journal Of Petroleum Research And Studies
Simulation of underground storage / UM EL-Radhuma Formation-Ratawi field
...Show More Authors

The aim of this study is to investigate the feasibility of underground storage of gas in Um El-Radhuma formation /Ratawi field. This formation is an aquifer consisting of a high permeable dolomitebeds overlain by impermeable anhydrite bed of Rus formation. Interactive petrophysics (IP), Petrel REand Eclipse 100 softwares were used to conduct a well log interpretation, build a reservoir simulationmodel and predict the reservoir behavior during storage respectively. A black oil, three dimensionaland two phase fluid model has been used. The results showed that the upper part of Um El-Radhumaformation is suitable for underground gas storage, because of the seal of its cap rock and capability ofreserving gas in the reservoir. It was foun

... Show More
View Publication
Crossref
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the general exponential distribution parameters using the simulation method
...Show More Authors

The main aim of this paper is to study how the different estimators of the two unknown parameters (shape and scale parameter) of a generalized exponential distribution behave for different sample sizes and for different parameter values. In particular, 

. Maximum Likelihood, Percentile and Ordinary Least Square estimators had been implemented for different sample sizes (small, medium, and large) and assumed several contrasts initial values for the two parameters. Two indicators of performance Mean Square Error and Mean Percentile Error were used and the comparisons were carried out between different methods of estimation  by using monte carlo simulation technique .. It was obse

... Show More
View Publication Preview PDF
Crossref