This study aimed to evaluate the effect of the COVID-19 outbreak on emergencies and pain among orthodontic patients attending a teaching hospital. The study was conducted among orthodontic patients receiving active orthodontic treatment or in a retention period at the College of Dentistry, University of Baghdad, Iraq. Their participation was voluntary, and they filled out an Arabic-translated questionnaire. The survey included general information, orthodontic problems, and a numerical rating scale for pain assessment. We used descriptive and inferential statistics (frequencies and intersecting frequencies), chi-square test and linear regression. Out of 75 orthodontic patients, only 54 (15 males and 39 females) were included in the study. The most encountered orthodontic problem was broken or movable bracket (55.6%), followed by long pocking wire 35.2%. In addition, 55.6% of the participants preferred to wait for the next appointment to see their orthodontist, and only 5.6% tried to treat the problem personally. There was no significant relationship between pain level, gender and age, whereas a strong significant association was found between pain intensity and orthodontic problems or emergencies. COVID-19 had a negative impact on orthodontic follow-up visits. The intensity of pain was strongly correlated with orthodontic problems or emergencies. Therefore, more attention should be given to patients, focusing on teaching them how to manage orthodontic emergencies during situations such as an outbreak.
Background: This study was conducted among diabetic persons to assess the sweet and salty taste sensitivity with its effect on gingival health in relation to salivary serotonin levels. Materials and methods: A cross-sectional comparative study design was used. All patients with diabetes aged 12-14 years that attend the Paediatric hospital at Baghdad medical city with specific inclusion criteria were involved in the sample of the present study (patients group 50 patients) compared with non-diabetic persons matched in age and gender of the study sample (control group 70 patients) who were attending dental unit in the college of dentistry/university of Baghdad. A two-alternative forced choice question including each component presented at f
... Show MoreThe serum protein test includes measurement of the level of total protein(albumin, globulin). Fetuin-A is a blood protein made in liver. It can inhibit insulin receptor, enhance insulin sensitivity and make the individuals more likely to develop type 2 diabetes, then disorder in lipid profile (Total cholesterol(TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), Triglyceride(TG) and very low density lipoprotein cholesterol (VLDL-c) . To evaluate Fetuin-A, total protein, albumin, globulin, HbAlc and lipid profile in 200 adult and elderly Iraqi patients with type 2 Diabetes Mellitus were taken and compare them with 200 subjects as a healthy control. The laboratory analysis(for patients and
... Show MoreAbstract
The current research aims to identify the attitudes towards the Covid-19 vaccine and the Locus of Control (internal, external) among university students, to identify the significance of the difference in attitudes towards the Covid-19 vaccine, the significance of the difference in the Locus of Control (internal, external) according to the gender variable (male, female), and to identify the significance of the difference in students’ attitudes towards Covid-19 vaccine according to the Locus of Control (internal, external). To achieve the objective of the research, the researcher developed two scales, a scale of (20) items to identify the attitudes toward a covid-19 vaccine, and a scale of the locus of c
... Show MoreThe emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show MoreBackground: Inhalation therapy has been employed as the mainstay of the treatment in chronic respiratory diseases such as asthma, Patients who taking asthma medication may be at risk of many health problems including oral health .The purpose of this study was to assess the local effect of ICS on oral tissue by measuring Candida albicans count colonies in saliva among12 years old asthmatic children who were collected from AL- Zahra Center Advisory for Allergy and Asthma, and compares them with non asthmatic children of the same age and gender. Material and Methods: The total sample involved sixty children of 12 years old, thirty asthmatic children who received medium dose of ICS/day (200-400 microgram/day) for 2 years and 30 non-asthmatic ch
... Show MoreThis research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being 0.66975075, 0.470
... Show MoreToday, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co
... Show MoreWidespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-
... Show More