Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by defining a set of control point pairs using manual selection, then comput the parameters of global affine transformation model to match them and resample the images. The second stage included matching process refinement by determining the shift value in control points (CPs) location depending on radiometric similarity measure. Then shift map technique was adjusted to adjust the process using 2nd order polynomial transformation function. This function has chosen after conducting statistical analyses, comparing between the common transformation functions (similarity, affine, projection and 2nd order polynomial). The results showed that the developed approach reduced the root mean square error (RMSE) of registration process and decreasing the discrepancies between registered datasets with 60%, 57% and 48% respectively for each one of the three tested datasets.
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.
Data of multispectral satellite image (Landsat- 5 and Landsat-7) was used to monitoring the case of study area in the agricultural (extension and plant density), using ArcGIS program by the method of analysis (Soil adjusted vegetative Index). The data covers the selected area at west of Baghdad Government with a part of the Anbar and Karbala Government. Satellite image taken during the years 1990, 2001 and 2007. The scene of Satellite Image is consists of seven of spectral band for each satellite, Landsat-5(TM) thematic mapper for the year 1990, as well as satellite Landsat-7 (ETM+) Enhancement thematic mapper for the year 2001 and 2007. The results showed that in the period from 1990 to 2001 decreased land area exposed (bare) and increased
... Show MoreObjectives: To assess the psychological adjustment of middle school students and to identify the relationship between differences in demographic characteristics and psychological adjustment.
Methodology: A descriptive correlation design was used. The study utilized a simple random sample to select (381) students using self-report to select students who will be recruited into the study for the period from November 26th, 2021 to April 1st, 2022. A scale approved in the study consisting of 40 items was chosen. It measures four trends which are personal, social, familial, and emotional adjustment. The data were analyzed by applying the descriptive statistical dat
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MorePurpose: Despite the high clinical accuracy of dynamic navigation, inherent sources of error exist. The purpose of this study was to improve the accuracy of dynamic navigated surgical procedures in the edentulous maxilla by identifying the optimal configuration of intra-oral points that results in the lowest possible registration error for direct clinical implementation. Materials and methods: Six different 4-area configurations were tested by 3 operators against positive and negative controls (8-areas and 3-areas, respectively) using a skull model. The two dynamic navigation systems (X-Guide® and NaviDent®) and the two registration methods (bone surface tracing and fiducial markers) produced four registration groups. The accuracy of the
... Show More
his project try to explain the using ability of spatial techniques for land cover change detection on regional level with the time parameter and did select for explain these abilities study case (Hewaizah marsh ) . this area apply to many big changes with the time. These changes made action on characters and behaviors of this area as well as all activities in it . This Project concerting to recognize the Using importance of remote sensing and GIS Methodology in data collecting for the changes of land use and the methodology for the analyses and getting the results for the next using as a base data for development and drawing the plans as well as in regional planning .This project focus on practical
... Show More