Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by defining a set of control point pairs using manual selection, then comput the parameters of global affine transformation model to match them and resample the images. The second stage included matching process refinement by determining the shift value in control points (CPs) location depending on radiometric similarity measure. Then shift map technique was adjusted to adjust the process using 2nd order polynomial transformation function. This function has chosen after conducting statistical analyses, comparing between the common transformation functions (similarity, affine, projection and 2nd order polynomial). The results showed that the developed approach reduced the root mean square error (RMSE) of registration process and decreasing the discrepancies between registered datasets with 60%, 57% and 48% respectively for each one of the three tested datasets.
The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreAbstract
This study aims to evaluated the user satisfaction of retrieval services
concerning to universities thesis and dissertations in university dissertation
unit of Baghdad Library for achieving the following objectives:
1- Evaluating the performance of this unit (thesis unit of Baghdad University
Library) regarding to users opinion.
2- Recognizing the reasons in this unit behind the case of non satisfaction of
its users and trying to find the suitable solutions.
To achieve those two objectives, the questionnaire tool was performed
and determined the user's satisfaction level by using a sample survey. 1118
graduated students were subjected to this experiment. The following main
results were appeared:<
This paper discusses the limitation of both Sequence Covering Array (SCA) and Covering Array (CA) for testing reactive system when the order of parameter-values is sensitive. In doing so, this paper proposes a new model to take the sequence values into consideration. Accordingly, by superimposing the CA onto SCA yields another type of combinatorial test suite termed Multi-Valued Sequence Covering Array (MVSCA) in a more generalized form. This superimposing is a challenging process due to NP-Hardness for both SCA and CA. Motivated by such a challenge, this paper presents the MVSCA with a working illustrative example to show the similarities and differences among combinatorial testing methods. Consequently, the MVSCA is a
... Show MoreThe sensors based on Nickel oxide doped chromic oxide (NiO: Cr2O3) nanoparticals were fabricated using thick-film screen printing of sol-gel grown powders. The structural, morphological investigations were carried out using XRD, AFM, and FESEM. Furthermore, the gas responsivity were evaluated towards the NH3 and NO2 gas. The NiO0.10: Cr2O3 nanoparticles exhibited excellent response of 95 % at 100oC and better selectivity towards NH3 with low response and recovery time as compared to pure Cr2O3 and can stand as reliable sensor element for NH3 sensor related applications.