<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
The present study focuses on the deformation of neutron-rich nuclei near the neutron drip line. The nuclei of interest include 28O, 42Si, 58Ca, 80Ni, 100Kr, 122Ru, 152Ba, 166Sm, and 176Er. The relativistic Hartree - Bogoliubov (RHB) approach with effective density-dependent point coupling is utilized to investigate the triaxial deformation, and Skyrme - Hartree - Fock + Bardeen - Cooper - Schrieffer is used to analyze the axial deformation. The study aimed to understand the interplay between nuclear forces, particle interactions, and shell structure to gain insights into the unique behavior of neutron-rich nuclei. Despite these nuclei containing magic numbers, their shapes are still affected by the nucleons' collective behavior and
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MoreTrip generation is the first phase in the travel forecasting process. It involves the estimation of the
total number of trips entering or leaving a parcel of land per time period (usually on a daily basis);
as a function of the socioeconomic, locational, and land-use characteristics of the parcel.
The objective of this study is to develop statistical models to predict trips production volumes for a
proper target year. Non-motorized trips are considered in the modeling process. Traditional method
to forecast the trip generation volume according to trip rate, based on family type is proposed in
this study. Families are classified by three characteristics of population social class, income, and
number of vehicle ownersh
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
The study population growth of the most important demographic phenomena upon which planners to meet changes in the size of the population increase is through knowledge of the requirements of population growth can be planned for the future. On this basis, Tuz District was chosen for the study of population growth, which set her period (1977-2012), and compared with the growth of the population of the province and the extent of the variation in population growth, according to the administrative units, has touched search numerical and proportional distribution of the population according to the administrative aspects of the judiciary, as well as environmental distribution.
The elimination of the study population growth dramatically
... Show MoreBCl3 is toxic gas and its detection is of great importance. Thus, here, B3LYP, M06-2X, and B97D density functionals are utilized for probing the effect of decorating Zn, Cd, and Au on the sensing performance of an AlP nano-sheet (AlPNS) in detecting the BCl3. We predict that the interaction of pure AlPNS with BCl3 is physisorption, and the sensing response (SR) of AlPNS is approximately 9.2. The adsorption energy of BCl3 changes from −4.1 to −18.8, −19.1, and −19.5 kcal/mol by decorating the Zn, Cd, and Au metals into the AlPNS surface, respectively. Also, the corresponding SR meaningfully rises to 40.4, 59.0, and 80.9, indicating that by increasing the atomic number of metals, the sensitivity of metal decorated AlPNS (metal@AlPNS)
... Show MoreAbstract
This study is aim to :
- Put a standard to evaluate the altruistic behavior in kindergarten children.
- Know level of the altruistic behavior in the kindergarten children according to their mother "s points of view.
- Know the level of the altruistic behavior in the kindergarten children according to their teacher "s points of view.
- The differences in the level of altruistic behavior in kindergarten children between their mothers & teachers points of view.
The sample consists of (120) children of kindergarten children in Baghdad. The researcher has built a to
... Show MoreObjective: Assessment of health problems and identify demographical information to elderly. Methodology:
it is a descriptive study, data were collected by the researchers depended on the direct interview with the
elderly by using the study instrument (questionnaire) as well as review the records of the geriatric.
Results: The majority of study sample (66%) were males and (24.3%) were within age group (70-74) years,
(44.7%) were widows, and (41.7%) did not read and write. This study applied the international classification
of diseases(short-table) in (11) items, which stated that most of the elderly were complaining from
health problems: debility of hearing (80.65%), eczema or allergies (69.35%), debility of vision (66.9
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.