<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
The research aims to study and assess the effectiveness of preventive measures banking for the reduction of money laundering based on the checklist (Check list), which have been prepared based on the paragraphs of some of the principles and recommendations of international and Money Laundering Act No. 93 of 2004 and the instructions thereto, to examine and assess the application of these measures by Gulf Commercial Bank, which was chosen to perform the search.
I've been a statement the concept of money laundering in terms of the definition and characteristics, stages and effects of political, economic and social as well as the nature of banking supervision in terms of the definition and the most important
... Show MoreBackground: Plantar heel pain is a clinical syndrome characterized by pain and tenderness beneath the heel which is typically worse in the morning and improves after the first few steps in the day. It is a common and frequently disabling clinical complaint that may be caused by a broad spectrum of osseous or soft tissue disorders.
Objective: To evaluate the effectiveness of an operation of multiple drilling of calcaneum for resistant plantar heel pain syndrome.
Methods: During the period from November 2012 to August 2016, 17 patients (17heels) were enrolled in a cohort clinical study at the orthopedic unit in AL-Sheikh Zayed and Al-Wassity Hospitals.
A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str
... Show MoreThe rivers are the main source of fresh water for many countries and the great development which is considered as one of the sustainable development elements in its various agricultural, industrial, domestic and environmental fields .The countries of the world seek food security and water security in order to ensure the basic needs of citizens .Because their distribution is uneven in many regions of the world with different human needs, which leads to conflicts over water sources, especially those located in one international river basin .This has led to the emergence of internationallegal rules governing the management of The problem revolves around the dialectic between limited water resources and increased need for water use b
... Show MorePrediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreA fluorescence microscopy considered as a powerful imaging tool in biology and medicine. In addition to useful signal obtained from fluorescence microscopy, there are some defects in its images such as random variation in brightness, noise that caused by photon detection and some background pixels in the acquired fluorescence microscopic images appear wrongly auto-fluorescence property. All these practical limitations have a negative impact on the correct vision and analysis of the fluorescent microscope users. Our research enters the field of automation of image processing and image analysis using image processing techniques and applying this processing and analysis on one of the very important experiments in biology science. This research
... Show MoreThis paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF
... Show MoreIn this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show More