<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
The study analyzed the current situation of public hospitals in the capital of Baghdad exclusively and diagnosed the resources available; especially after the high demand for these hospitals as a result of the citizen’s need to review the hospital to take care of them, especially after the Corona pandemic. Eight major hospitals in Baghdad were selected to determine the current reality of providing fire safety tools or equipment and what are the preventive measures needed to reduce it. The results after practical study showed many defects and weaknesses in the current situation due to their reliance on the traditional management to manage and provide all preventive measures and safet
The important parameter used for determining the probable application of miscible displacement is the MMP (minimum miscibility pressure). In enhanced oil recovery, the injection of hydrocarbon gases can be a highly efficient method to improve the productivity of the well especially if miscibility developed through the displacement process. There are a lot of experiments for measuring the value of the miscibility pressure, but they are expensive and take a lot of time, so it's better to use the mathematical equations because of it inexpensive and fast. This study focused on calculating MMP required to inject hydrocarbon gases into two reservoirs namely Sadi and Tanomaa/ East Baghdad field. Modified Peng Robenson Equation of State was
... Show More: In this study, a linear synchronous machine is compared with a linear transverse flux machine. Both machines have been designed and built with the intention of being used as the power take off in a free piston engine. As both topologies are cylindrical, it is not possible to construct either using just flat laminations and so alternative methods are described and demonstrated. Despite the difference in topology and specification, the machines are compared on a common base in terms of rated force and suitability for use as a generator. Experience gained during the manufacture of two prototypes is described.
BMMAM Saleh, EUROPEAN ACADEMIC RESEARCH, 2016
The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreA Pap test can identify the pre-cancerous and cancerous problem in the vagina and uterine cervix. Cervical tumour is the easiest gynecologic disease to be diagnosed, treated and prevented using regular screening tests and follow-up. This review aimed to explore the opinion of specialists about cytological changes and the precancerous lesions with Pap smear test and visual inspection of the cervices, also to determine the relationship of this malignancy with demographic characteristics of patients. Results showed that few cervical cancer and pre-cancer were with women in postmenopausal period, but more were with women in the premenopausal period. Visual inspection of the cervix can show erosion lesions by gross inspection. Upon cytology exam
... Show MoreIn this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m