<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show MoreThe cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less
... Show MoreBackground: The bone mineral density of the lumbar vertebra has been assessed according to the results of the Dual-Energy X-Ray Absorptiometry (DEXA). Although anemia is known to affect bone mineral density, at the present time, it is not clear which vertebra is more affected by this disease. Objective: To evaluate the effects of anemia on the bone mineral density of the lumbar vertebra in comparison with a normal subject and determine which part of the lumbar vertebra is more affected by anemia. Methods: All 205 participants in this study complained of bone pain (90 males and 105 females). 95 patients, including both sexes, suffered from anemia. Additionally, the study included 110 seemingly healthy volunteers as the control group
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreInthisstudy,FourierTransformInfraredSpectrophotometry(FTIR),XRay Diffraction(XRD)andlossonignition(LOI),comparativelyemployedtoprovideaquick,relativelyinexpensiveandefficientmethodforidentifyingandquantifyingcalcitecontentofphosphateoresamplestakenfromAkashatsiteinIraq.Acomprehensivespectroscopicstudyofphosphate-calcitesystemwasreportedfirstintheMid-IRspectra(4004000cm-1)usingShimadzuIRAffinity-1,fordifferentcutsofphosphatefieldgradeswithsamplesbeneficiatedusingcalcinationandleachingwithorganicacidatdifferenttemperatures.Thenusingtheresultedspectratocreateacalibrationcurverelatesmaterialconcentrationstotheintensity(peaks)ofFTIRabsorbanceandappliesthiscalibrationtospecifyphosphate-calcitecontentinIraqicalcareousphosphateore.Theirpeakswereass
... Show MoreThis study aims to determine the effect of x-ray radiation resulting from solar flares in high-frequency radio wave communications through the ionosphere and to study the radio blackout events that occur over Iraq, located within (38,28) latitude, and (38,49) longitude. Using X-ray data during strong X flares and radio wave absorption data across the D ionosphere for 10 years from 2012 to 2021. The study concluded that there were 43 events of x-flare, most of which were during years of high solar activity. All of these flares produced X-rays that caused a radio blackout, R3 and only 13 events affected Iraq.
At the end of 2019, a new form of Coronavirus (later dubbed COVID-19) emerged in China and quickly spread to other regions of the globe. Despite the virus’s unique and unknown characteristics, it is a widely distributed infectious illness. Finding the geographical distribution of the virus transmission is therefore critical for epidemiologists and governments in order to respond to the illness epidemic rapidly and effectively. Understanding the dynamics of COVID-19’s spatial distribution can help to understand the pandemic’s scope and effects, as well as decision-making, planning, and community action aimed at preventing transmission. The main focus of this study is to investigate the geographic patterns of COVID-19 disseminat
... Show MoreBackground: This study was done to assist X-ray diffraction and biocompatability of glass ionomer cement reinforced by different ratios of Hydroxyapatite. Materials and Methods: The powder of glass ionomer cement reinforced by different ratios of Hydroxyapatite were used to get X-ray diffraction pattern by X-ray diffraction machine, While for biocompatibility test, A polyethylene tubes containing glass ionomer cement reinforced by different ratios of Hydroxyapatite were implanted on the dorsal submucosal site of Rabbit's tissues and histological slide were prepared for histopathological study. Results: X-ray diffraction test showed that all elements of glass ionomer cement reinforced by different ratios of Hydroxyapatite were react with eac
... Show MoreAccording to Chandra Survey Observatory Near-Asteroid Belt Comets, the solar wind's contact with the comet produces a variety of spectral characteristics. The study of X-ray spectra produced by charge exchange is presented here. The spectrum of a comet can reveal a lot about its composition. This study has concentrated on the elemental abundance in six different comets, including 17P/Holmes, C/1999T1, C/2013A1, 9p/Temple1, and 103p/Hartley2 (NEAT). Numerous aspects of the comet's dynamics allow it to behave in a unique manner as it gets closer to the Near-Asteroid Belt. These characteristics are being examined, and some studies are still ongoing. The computations allow us to observe, for instance, how the composition of
... Show More