<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
Thin films of (CuO)x(ZnO)1-x composite were prepared by pulsed laser deposition technique and x ratio of 0≤ x ≤ 0.8 on clean corning glass substrate at room temperatures (RT) and annealed at 373 and 473K. The X-ray diffraction (XRD) analysis indicated that all prepared films have polycrystalline nature and the phase change from ZnO hexagonal wurtzite to CuO monoclinic structure with increasing x ratio. The deposited films were optically characterized by UV-VIS spectroscopy. The optical measurements showed that (CuO)x(ZnO)1-x films have direct energy gap. The energy band gaps of prepared thin films
Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreThe increased use of hybrid PET /CT scanners combining detailed anatomical information along withfunctional data has benefits for both diagnostic and therapeutic purposes. This presented study is to makecomparison of cross sections to produce 18F , 82Sr and68Ge via different reactions with particle incident energy up to 60 MeV as a part of systematic studies on particle-induced activations on enriched natNe, natRb, natGa 18O,85Rb, and 69Ga targets, theoretical calculation of production yield, calculation of requiredtarget and suggestion of optimum reaction to produce: Fluorine-18 , Strontium-82 andGermanium-68 touse in Hybrid Machines PET/CT Scanners.
The objective of this study was to assess the impact of the COVID-19 pandemic on healthcare providers (HCPs) at personal and professional levels.
This was a cross-sectional descriptive study. It was conducted using an electronic format survey through Qualtrics Survey Software in English. The target participants were HCPs working in any healthcare setting across Iraq. The survey was distributed via two professional Facebook groups between 7 April and 7 May 2020. The survey items were adopted with modifications from three previous studies of Severe Acute Respiratory Syndrome (SARS) and Avia
COVID-19 is a coronavirus disease caused by the severe acute respiratory syndrome. According to the World Health Organization (WHO), coronavirus-2 (SARS-CoV-2) was responsible for 87,747,940 recorded infections and 1,891,352 confirmed deaths as of January 9, 2021. Antibodies that target the Sprotein are efficient in neutralizing the virus. Methodology: 180 samples were collected from clinical sources (Blood and Nasopharyngeal swabs) and from different ages and genders at diverse hospitals in Baghdad / IRAQ between November 5, 2021, to January 20, 2022. All samples were confirmed infected with COVID-19 disease by RT-PCR technique. Haematology analysis and blood group were done for all samples, and Enzyme-Linked Immunosorbent Assay used an Ig
... Show MoreWorldwide, hundreds of millions of people have been infected with COVID-19 since December 2019; however, about 20% or less developed severe symptoms. The main aim of the current study was to assess the relationship between the severity of Covid-19 and different clinical and laboratory parameters. A total number of 466 Arabs have willingly joined this prospective cohort. Out of the total number, 297 subjects (63.7%) had negative COVID-19 tests, and thus, they were recruited as controls, while 169 subjects (36.3%) who tested positive for COVID-19 were enrolled as cases. Out of the total number of COVID-19 patients, 127 (75.15%) presented with mild symptoms, and 42 (24.85%) had severe symptoms. The age range for the partic
... Show MoreThe objective of this study was to assess the impact of the COVID-19 pandemic on healthcare providers (HCPs) at personal and professional levels.
This was a cross-sectional descriptive study. It was conducted using an electronic format survey through Qualtrics Survey Software in English. The target participants were HCPs working in any healthcare setting across Iraq. The survey was distributed via two professional Facebook groups between 7 April and 7 May 2020. The survey items were adopted with modifications from three previous studies of Severe Acute Respiratory Syndrome (SARS) and Avia
One of the most serious health disasters in recent memory is the COVID-19 epidemic. Several restriction rules have been forced to reduce the virus spreading. Masks that are properly fitted can help prevent the virus from spreading from the person wearing the mask to others. Masks alone will not protect against COVID-19; they must be used in conjunction with physical separation and avoidance of direct contact. The fast spread of this disease, as well as the growing usage of prevention methods, underscore the critical need for a shift in biometrics-based authentication schemes. Biometrics systems are affected differently depending on whether are used as one of the preventive techniques based on COVID-19 pandemic rules. This study provides an
... Show More