This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to develop the model of multiple linear regression (MLR) with the stepwise regression technique in the SPSS v25 software. The results indicate that the model of trip generation is related to family size and composition, gender, students’ number in the family, workers’ number in the family, and car ownership. The ANN prediction model is more accurate than the MLR predicted model: the average accuracy (AA) was 83.72% in the ANN model but only 72.46% in the MLR model.
The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreObjective(s): To evaluate the family physicians' practices and to measure its impact upon the quality of family
medicine health care in Baghdad City model primary health care centers.
Methodology: A descriptive study, using the evaluation approach, has evaluated the impact of family physicians'
practices upon quality of healthcare in Baghdad's Model Primary Health Care Centers of Family Medicine. It is
carried out during 15th of May – 20th of August 2017. The study is conducted at five model primary health care
centers of family medicine from two districts; AL-Rusafa and AL-Kurkh. Sample size is calculated to be (76)
family physicians. Convenient sample of (124) patients who are attending these primary health care cen
Objective(s): to assess the effectiveness of educational program on nurses' knowledge concerning the side
effects of chemotherapy among children with leukemia.
Methodology: A descriptive analytic (quasi – experimental) design study was carried out at Baghdad City from
2
nd of October to 27th of June 2015. Non-probability sample of (35) male and female nurses was selected from
the Oncology Wards in Children Welfare, Child's Central and Baghdad Teaching Hospital. The study
instruments consisted of two major parts to meet the purposes of study. The first part is related to nurses'
demographic characteristics and the second part (four domains) is related to nurses' knowledge concerning the
side effects of chemothera
This research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreBACKGROUND: Diabetes Mellitus is a complex chronic illness that has increased significantly around the world and is expected to affect 628 million in 2045. Undiagnosed type 2 diabetes may affect 24% - 62% of the people with diabetes; while the prevalence of prediabetes is estimated to be 470 million cases by 2030. AIM OF STUDY: To find the percentage of undiagnosed diabetes and prediabetes in a slice of people aged ≥ 45years, and relate it with age, gender, central obesity, hypertension, and family history of diabetes. METHODS: A cross sectional study that included 712 healthy individuals living in Baghdad who accepted to take part in this study and fulfilling the inclusion and exclusion criteria.
... Show MoreMRY *Khalid Sh. Sharhan, *Naseer Shukur Hussein, INTERNATIONAL JOURNAL OF DEVELOPMENT IN SOCIAL SCIENCE AND HUMANITIES, 2021