In this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated. Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under static loading, there was an increase in all the parameters, including the maximum load, ductility, and stiffness. Mid-span deflection was reduced by 25% under static and impact loads. A finite element analysis was performed by using the ABAQUS software. The midspan deflection value was greater than the experimental values by 6% and 3% for impact and static loads, respectively, and all other results showed a high rate of agreement with the obtained test results. The agreement between the numerical and experimental results indicates that the developed numerical model is capable of analyzing the impact and static behavior of such hybrid GFRP-concrete system. Doi: 10.28991/cej-2020-03091608 Full Text: PDF
Practically, torsion is normally combined with flexure and shear actions. Even though, the behavior of reinforced concrete continuous beams under pure torsion is investigated in this study. It was performed on four RC continuous beams under pure torsion. In order to produce torsional moment on the external supports, an eccentric load was applied at various distances from the longitudinal axis of the RC beams until failure.
Variables considered in this study are absolute vertical displacement of the external supports, torsional moment’s capacity, angle of twist and first cracks occurrences. According to experimental results; when load eccentricity increased from 30cm to 60cm, the absolute vertical displacement i
... Show MoreThe provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show MoreThe provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show MoreStatic loads exposing to mechanical components can cause cracks, which are lead to form stress concentration regions causing the failure of structure. Generally, from 80% to 90% of structure failure is due to initiation of the cracks. Therefore, it is necessary to repair the crack and reduce its effect on the structure where the effect of the crack is modelled as an additional flexibility to the structure. In the last few years, piezoelectric materials have been considered as one of the most favourable repairing techniques. The piezoelectric material converts the applied voltage on it to a bending moment to counter the bending moment caused by the external load on the beam at the crack location. In this study, the design of the piez
... Show MoreTest results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer
... Show MoreThis paper studies the behavior of reinforced Reactive Powder Concrete (RPC) two-way slabs under static and repeated load. The experimental program included testing six simply supported RPC two-way slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. All the tested specimens were identical in their material properties, and reinforcement details except their steel fibers content. They were cast in three pairs, each one had a different steel fibers ratio (0.5 %, 1 %, and 1.5 %) respectively. In each pair, one specimen was tested under static load and the other under five cycles of repeated load (loading-unloading). Static test results revealed that increasing steel fibres volume fraction from 0.5 % to 1 % and from 1% to 1.5%,
... Show MoreThe theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma
... Show MoreIn this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed correspondin
... Show More