Preferred Language
Articles
/
kBizZ5UBVTCNdQwC9S0d
Simulation and design model for reinforced concrete slabs with lacing systems
...Show More Authors

Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of similar static-tested specimens, where the reduction in ductility factor ranged between 8.4% and 22.3% for all specimens. Additionally, the tested slabs were analyzed numerically using the ABAQUS software package. The validated FE test program was used to study the effect of varying the lacing reinforcement ratio, the compressive strength of concrete, and the material types of the tension and lacing reinforcements. The lacing reinforcement becomes more effective in increasing the slab capacity when using the higher compressive strength of concrete.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Compressive Behavior of Fiber Reinforced Concrete Columns Rehabilitated with CFRP Warps
...Show More Authors

Over the last few years, there has been a worldwide increase in the use of composite materials for rehabilitation of deficient reinforced concrete structures. One important application of this technology is the use of Carbon Fiber Reinforced Polymer (CFRP) jacket to provide external confinement of reinforced concrete columns. Square concrete column specimens 100×100×1000 mm with concrete
compressive strength of about 30 and 50 MPa, steel fiber volume fraction 0%, 0.5%, 0.75%, and percentage of longitudinal reinforcement 2.01%, 3.14% and 4.52% were tested until failure in previous research. In this research seven tested columns were repaired and rehabilitated using one layer of CFRP flexible wraps and tested to determine their ultim

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Behaviour of Fire Exposed Reinforced Concrete Rigid Beams with Restrained Ends
...Show More Authors

This paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Response of Damaged Reinforced Concrete Beams Strengthened with NSM CFRP Strips
...Show More Authors

This paper presents a study (experimentally) for strengthening reinforced concrete (RC) beams with Near-Surface-Mounted (NSM) technique. The use of this technique with CFRP strips or rebars is an efficient technology for increasing the strength for flexure and shear or for repairing damaged reinforced concrete (RC) members. The objective of this research is to study, experimentally, RC beams either repaired or strengthened with NSM CFRP strips and follow their flexural behavior and failure modes. NSM-CFRP strips were used to strengthen three RC beam specimens, one of them was initially strengthened and tested up to failure. Four beam specimens have been initially subjected to preloading to 50% and 80% of ultimate load. Two of the sp

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Analysis of concrete beams reinforced by GFRP bars with varying parameters
...Show More Authors
Abstract<p>Structural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi</p> ... Show More
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering &amp; Technology
Modified Strut Effectiveness Factor for FRP-Reinforced Concrete Deep Beams
...Show More Authors

A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Low Velocity Impact Loading on SelfCompacting Concrete Reinforced with Carbon Fiber Reinforced Polymers
...Show More Authors

t-Self-Compacting Concrete (SCC) reduces environmental noise and has more workability. This research presents an investigation of the behavior of SCC under mechanical loading (impact loading). Two types of cement have been used to produce SCC mixtures, Ordinary Portland Cement (OPC) and Portland Limestone Cement (PLC), which reduces the emission of carbon dioxide during the manufacturing process. The mixes were reinforced with Carbon Fiber Reinforced Polymer (CFRP) which is usually used to improve the seismic performance of masonry walls, to replace lost steel reinforcements, or to increase column strength and ductility. Workability tests were carried out for fresh SCC. Prepared concrete slabs of 500×500×50mm were tested for lo

... Show More
Publication Date
Mon Aug 01 2022
Journal Name
Engineering, Technology & Applied Science Research
Castellated Beams with Fiber-Reinforced Lightweight Concrete Deck Slab as a Modified Choice for Composite Steel-Concrete Beams Affected by Harmonic Load
...Show More Authors

The behavior investigation of castellated beams with fiber-reinforced lightweight concrete deck slab as a modified choice for composite steel-concrete beams affected by harmonic load is presented in this study. The experimental program involved six fixed-supported castellated beams of 2140mm size. Three types of concrete were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber-Reinforced Aggregate Concrete (LWACF). The specimens were divided into two groups: the first comprised three specimens tested under harmonic load effect of 30Hz operation frequency for 3 days, then the residual strength was determined through static load application. The second group included three specimens ide

... Show More
Crossref (11)
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Nov 01 2013
Journal Name
Journal Of Engineering
Strengthening and Closing Cracks for Existing reinforced Concrete Girders Using External Post-Tensioning
...Show More Authors

Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems
...Show More Authors

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot

... Show More
Crossref (3)
Crossref