Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of similar static-tested specimens, where the reduction in ductility factor ranged between 8.4% and 22.3% for all specimens. Additionally, the tested slabs were analyzed numerically using the ABAQUS software package. The validated FE test program was used to study the effect of varying the lacing reinforcement ratio, the compressive strength of concrete, and the material types of the tension and lacing reinforcements. The lacing reinforcement becomes more effective in increasing the slab capacity when using the higher compressive strength of concrete.
This paper presents the non-linear finite element method to study the behavior of four reinforced rectangular concrete MD beams with web circular openings tested under two-point load. The numerical finite elements methods have been used in a much more practical way to achieve approximate solutions for more complex problems. The ABAQUS /CAE is chosen to explore the behavior of MD beams. This paper also studies, the effect of both size and shape of the circular apertures of MD beams. The strengthening technique that used in this paper is externally strengthening using CFRP around the opening in the MD beams. The numerical results were compared to the experimental results in terms of ultimate load failure and displace
... Show MoreThe main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
Objective(s): To determine the impact of psychological distress in women upon coping with breast cancer.
Methodology: A descriptive design is carried throughout the present study. Convenient sample of (60) woman with breast cancer is recruited from the community. Two instruments, psychological distress scale and coping scale are developed for the study. Internal consistency reliability and content validity are obtained for the study instruments. Data are collect through the application of the study instruments. Data are analyzed through the use of descriptive statistical data analysis approach and inferential statistical data analysis approach.
Results: The study findings depict that women with breast cancer have experien
... Show MoreFrom a group of 60 patients with dentoalveolar infections among which 10 were diabetic and 10 non-diabetic were elected as test group as well as 10 normal subjects as control group. Six Staphylococcus aureus and Streptococcus anginousus were diagnosed in the first and second group of the patients the immune status of the patients and control subject were tested by pathogen specific antibody titre, neotrophil NBT reduction phagocytosis and leukocyte inhibition LIF. Diabetic patients with dentoalveolar infection shows decreased specific antibody titers, subnormal neutrophil NBT phagocytic % as well as non significant LIF % in comparison non diabetic reveal high specific antibody titers against , high neutrophil NBT% and significant LIF% re
... Show MoreThe nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele
... Show MoreObjective: To assess the clinical learning environment and clinical training for students' in maternal and child
health nursing.
Methodology: A descriptive study was conducted on non probability sample (purposive) of (175) students' in
Nursing College/ University of Baghdad for the period of June 19th to July 18th 2013. A questionnaire was used as a
tool of data collection to fulfill with objective of the study and consisted of three parts, including demographic,
clinical learning environment and clinical training for students' in maternal and child health nursing. Descriptive
statistical analyses were used to analyze the data.
Results: The results of the study revealed that the 65.1% of student at age which ranged b
The need for wireless sensing technology has rapidly increased recently, specifically the usage of electromagnetic waves which becoming more required as a source of information. Silicon carbide (SiC) Nano particles has been used in this study, the material under test (MUT) was exposed directly to a microwave field to examine the electromagnetic behavior. The permittivity and permeability were investigated with different filler materials to approach best and optimal electromagnetic absorbing characteristics to assist engineers to monitor structure-based composite for defects evaluation that may occur during operation conditions or through manufacturing process. XRD, FESEM and both complex permittivity and permeability were measured f
... Show MoreThe ground state proton, neutron and matter densities of exotic 11Be and 15C nuclei are studied by means of the TFSM and BCM. In TFSM, the calculations are based on using different model spaces for the core and the valence (halo) neutron. Besides single particle harmonic oscillator wave functions are employed with two different size parameters Bc and Bv. In BCM, the halo nucleus is considered as a composite projectile consisting of core and valence clusters bounded in a state of relative motion. The internal densities of the clusters are described by single particle Gaussian wave functions.
Elastic electron scattering proton f
... Show More