Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of similar static-tested specimens, where the reduction in ductility factor ranged between 8.4% and 22.3% for all specimens. Additionally, the tested slabs were analyzed numerically using the ABAQUS software package. The validated FE test program was used to study the effect of varying the lacing reinforcement ratio, the compressive strength of concrete, and the material types of the tension and lacing reinforcements. The lacing reinforcement becomes more effective in increasing the slab capacity when using the higher compressive strength of concrete.
In this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72% for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt
... Show MoreIn this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha
... Show MoreIn this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreOne of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to stu
... Show MoreCarbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreAbstract The present work aims to study the performance of reinforced compacted clay soil by sand columns stabilized with sodium silicate to obtain more solid columns than the surrounding soil. The experimental work was carried out by using a lab model to evaluate the performance of both the floating and end bearing sand columns. The results showed that the improvement ratio for the soil reinforced with sand columns stabilized with sodium silicate reached 390% for the type of floating columns and 438% for end bearing columns.
Abstract:
Since the railway transport sector is very important in many countries of the world, we have tried through this research to study the production function of this sector and to indicate the level of productivity under which it operates.
It was found through the estimation and analysis of the production function Kub - Duglas that the railway transport sector in Iraq suffers from a decline in the level of productivity, which was reflected in the deterioration of the level of services provided for the transport of passengers and goods. This led to the loss of the sector of importance in supporting the national economy and the reluctance of most passengers an
... Show MoreThe elections of the Council of Representatives in Iraq are one of the manifestations of political participation, which makes it attracts the attention of researchers. Where Iraq witnessed in 2005 important political events in the Iraqi arena, a pluralist parliamentary elections or elections in Iraq by direct free election on January 30, the first almost half a century ago. On November 15 of the same year, Iraq adopted a permanent constitution for the country through a popular referendum.
The current research aims to identify the effect of the Bransford and Stein model on the achievement of fifth-grade literary students for geography and their reflective thinking. To achieve the objective of the research, the following two null hypotheses were formulated:
- There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental group students who studied geography using the Bransford and Stein model and the average scores of the control group students who studied the same subject in the usual way in the achievement test. 2- There is no statistically significant difference at the significance level (0.05) between the average scores of the experimental gr
The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.