In this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery an
... Show MoreThe aim of the current study was to optimize different cultural and environmental conditions for production the antibacterial bioactive metabolites by Streptomyces rochei M78 isolated from agriculture soil, in Baghdad, Iraq. The effect of various parameters such as, culture media, incubation time, pH, carbon and nitrogen sources, C: N ratios and inducers on antibacterial metabolite production was studied by varying single parameter at a time. It was found from the results that higher metabolite production by isolate observed using starch casein broth (SCB) as the best production medium, at initial pH 7.0.Starch andcasein +yeast extract + peptone appeared to be the best carbon and nitrogen sources respectively and C: N ratio of 4: 1 after
... Show MoreIn this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also fou
... Show MoreBioethanol is an attractive fuel with higher potential for energy security and environmental safety. Olive solid residues were used as a raw material for the production of bioethanol through the use of different preliminary treatments . Separate treatments with cellulose, hydrochloric acid (HCl 5%), sulfuric acid (H2SO4 2%), and liquid ammonia NH4OH (20%) were used to convert cellulose and hemicellulose into monosaccharaides. The production of ethanol was observed during the fermentation process using R. minuta under anaerobic conditions. After 3 days of fermentation, lowest concentrations of ethanol of 0.233, 0.249, 0.261, and 0.275 g/ l were produced from ol
... Show MoreTerrestrial isopods play an important role in the biodegradation of many wastes which gives agreat importance in the nutrient cycles and ecosystem services , therefore this paper aims to use species
Keratinases are enzymes belonging to the serine hydrolases group which are capable of degradation of keratin, an insoluble and fibrous structural protein widely cross-linked with hydrogen, disulfide, and hydrophobic bonds. Attempts to find new sources of enzymes and amino acids for fundamental knowledge of enzyme evolution, structure‐function relationships, catalysis mechanisms of enzymes, and even for the identification of novel protein folds. In this study, seventy-nine samples were collected from different places in the University of Baghdad, and the best isolate for amino acid production by feathers degradation was by using Streptomyces venezuelae AZ15. The best fermentation system and the optimum culture condit
... Show MoreSoil samples from fields cultivated with barley and wheat in addition to samples
from spoiled orange and apple fruits and carrot roots were collected with the aim to
isolate cellulase producing bacterial strains. Bacterial isolates obtained from these
samples were grown on a selective medium containing carboxymethyl cellulose
(CMC) as a sole source for carbon and energy. Results showed that nine isolates out
of fifty were able to produce cellulase.The specific activity of cellulase in culture
filtrate of the most efficient isolate was 1.601 u/mg protein.This isolate was
identified according to its morphological characteristics and biochemical tests, and
then by using Api 20-E and VITEK-II identification systems an