Nanochemistry is a significant area which involves the synthesis, design, and manipulation of particle structures with dimensions ranging from 1 to 100 nanometres. It is now one of the major concerns of pharmaceutical and biological researchers. The current study discusses recent advances in the use of silver nanoparticles (AgNPs) as a selective sensor for qualitative and colorimetric quantitative detection of mercury ions. The synthesis of significant noble metal AgNPs is described as a novel, low-cost, quick, and simple method for detecting mercury ions. Due to the seriousness of mercury toxicity to our cells, AgNPs may be successfully employed for the detection of ecologically harmful mercury ions in a wide variety of aqueous
... Show MoreSince cancer is becoming a leading cause of death worldwide, efforts should be concentrated on understanding its underlying biological alterations that would be utilized in disease management, especially prevention strategies. Within this context, multiple bodies of evidence have highlighted leptin’s practical and promising role, a peptide hormone extracted from adipose and fatty tissues with other adipokines, in promoting the proliferation, migration, and metastatic invasion of breast carcinoma cells. Excessive blood leptin levels and hyperleptinemia increase body fat content and stimulate appetite. Also, high leptin level is believed to be associated with several conditions, including overeating, emotional stress, inflammation, obesity,
... Show MoreIn this paper, an eco-epidemiological model with media coverage effects is established and studied. An -type of disease in predator is considered. All the properties of the solution of the proposed model are discussed. An application to the stability theory was carried out to investigate the local as well as global stability of the system. The persistence conditions of the model are determined. The occurrence of local bifurcation in the model is studied. Further investigation of the global dynamics of the model is achieved through using a numerical simulation.
The aim of this study is to investigate the antibacterial capabilities of different coating durations of three nanoparticle (NP) coatings: molybdenum (Mo), tantalum (Ta), and zinc oxide (ZnO), and their effects on the surface characteristics of 316L stainless steel (SS). The coated substrates underwent characterization utilizing field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffractometer (XRD) techniques. The antibacterial efficacy of NPs was evaluated using the agar diffusion method. The FE-SEM and EDX images confirmed the presence of nano-sized particles of Mo, Ta, and ZnO on the surface of the substrates with perfectly symmetrical spheres and a uniform distribution of
... Show MoreThe literature shows conflicting outcomes, making it difficult to determine how e-learning affects the performance of students in higher education. The effect of e-learning was studied and data has been gathered with the utilization of a variety of qualitative and quantitative methods, especially in relation to students' academic achievements and perceptions in higher education, according to literature review that has been drawn from articles published in the past two decades (2000-2020). The development of a sense of community in the on-line environment has been identified to be one of the main difficulties in e-learning education across this whole review. In order to create an efficient online learning community, it could be claim
... Show MoreMany researchers used different methods in their investigations to enhance the heat transfer coefficient, one of these methods is using porous medium. Heat transfer process inside closed and open cavities filled with a fluid-saturated porous media has a considerable importance in different engineering applications, such as compact heat exchangers, nuclear reactors and solar collectors. So, the present paper comprises a review on natural, forced, and combined convection heat transfer inside a porous cavity with and without driven lid. Most of the researchers on this specific subject studied the effect of many parameters on the heat transfer and fluid field inside a porous cavity, like the angle of inclination, the presenc
... Show MoreIn this paper, we study the effects of coherent and incoherent illumination on the optical imaging system. The effects were studied qualitatively in terms of Point Spread Function (PSF) and Modulation Transfer Function (MTF), and quantitatively in terms of Root Mean Square Error (RMSE). Different values of radius of aperture were investigated in the presence and absence of spherical aberration with various magnitudes of spherical aberration (M=1, 2, and 3). The experiments were performed using homogeneous media.
The results show that imaging with incoherent illumination is better than imaging with coherent illumination, especially for small aperture. Also, we found that the effects of spherical aberration
... Show MoreEffects of Boron on the structure of chloroplasts membrane isolated from cauliflower are investigated , using light scattering technique. Results obtained in this study suggest that Boron in the concentration range (0.1-5 µm) can fluidize the lipids of the chloroplast membrane due to different extent. Mechanisms by which Boron can change the lipid fluidity is discussed. Furthermore, an experimental evidence is presented to show that2µM Boron can mediate conformational changes in the membrane –bound proteins of the cauliflower’s chloroplast.