The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast construction tolerances, and allows rapid bridge disassembly to drastically reduce the time needed to replace any deteriorating structural component (e.g., the bridge deck). A series of 11 push-out tests highlight why the novel structural details of the FBSC result in superior shear load-slip displacement behavior compared to welded shear studs. The paper also quantifies the effects of bolt diameter and bolt preload and presents a design equation to predict the shear resistance of the FBSC.
Through an experimental program of eighteen specimens presented in this paper, the bond strength between reinforcing bar and rubberized concrete was produced by adding waste tire rubber instead of natural aggregate. The fine and coarse aggregate was replaced in 0%, 25%, and 50% with the small pieces of a waste tire. Natural aggregate replacement ratio, rebar size, embedded rebar length, the rebar yield stress of rebar, cover, and concrete compressive strength were studied in this investigation. Ultimate bond stress, bond stress-slip response, and failure modes were presented. The experimental results reported that a reduction of 19% in bond strength was noticed in 50% replaced rubberized concrete compared with convention
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreUnused and expired pharmaceutical drugs are a novel type of organic corrosion inhibitor. They are less expensive, more effective, and less harmful than conventional organic corrosion inhibitors. This study investigated the effects of concentration, adsorption mechanism and thermodynamic parameters of enalapril malate (ENAP) as a corrosion inhibitor for carbon steel in a saline solution (3.5 % NaCl). The polarization method was used to determine the corrosion rate and inhibition efficiency. Field emission scanning electron microscopy (FE-SEM) and atomic force spectroscopy (AFM) were used to investigate the surface morphology and topography of carbon steel after immersion in both uninhibited and inhibited media for 24 h. Fourier transform inf
... Show MoreThis research aims to investigate the thermal performance of different thermal composite insulators, wrapped around a closed-loop copper pipe (CLP). To achieve this aim a system was designed and manufactured. It is consisted of closed water tank insulated by Rock Wool, and supplied with two electric heaters, two thermostat, a flow meter, a water pump, digital temperature scales, and four series of (CLP).
Six insulators were prepared namely; composites of Impregnated Fiberglass with Elastoclad and foaming Rubber (FER), Impregnated Fiberglass with Elastoclad resin and Polymeric Membrane (FEM), Impregnated Fiberglass with Polyurethane thermoset resin and Foaming Rubber (FUR), Impregnated Fiberglass with Polyurethane thermoset resin and P
The ability to inhibit corrosion of low carbon steel in a salt solution (3.5%NaCl) has been checked with three real expired drugs (Cloxacillin, Amoxicillin, Ceflaxin) with variable concentrations (0, 250, 500, 750) mg/L were examined in the weight loss. The inhibition efficiency of the Cloxacillin 750 mg/L showed the highest value (82.8125 %) and the best inhibitor of the rest of the antibiotics. The different concentrations of Cloxacillin drug (0, 250, 500, 750) mg/L and temperature (25, 35, 45, 55) oC were studied as variables with potentiodynamic polarization, Scanning Electron Microscopy (SEM) for surface morphology and electrochemical impedance spectroscopy (EIS) depending on current values and the resistance of charge to
... Show MoreThe effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p
... Show MoreThe corrosion inhibition effect of a new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR) and potentiodynamic polarization. The obtained results indicated that the new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) (FSFD) has a promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. The density functional theory (DFT) study was performed on the new furan derivative (FSFD) at the B3LYP/6-311G (d, p) basis set level to explore the relation between their inhibition efficiency and molecular electro
This work investigates the effect of the gas nitriding process on the surface layer microstructure and mechanical properties for steel 37, tool steel X155CrVMo12-1 and stainless steel 316L. Nitriding was conducted at a temperature of 550 °C for 2 hours during the first stage and at 750 °C for 4 hours during the second stage. SEM and X-ray diffraction tests were performed to evaluate the microstructural features and the major phases formed after surface treatment. SEM and X-ray diffraction tests were performed to assess the microstructural features and the primary phases formed after surface treatment. The new secondary precipitates were identified as γ′-Fe4N, ε (Fe2–3N), and α-Fe, exhibiting an uneven chain-like pattern wit
... Show MoreIn this study, a predicated formula is been proposed to find the shear strength of non-prismatic beams with or without openings. It depends on the contributions of concrete shear strength considering the beam depth variation and existing openings, shear steel reinforcements and defines the critical shear section, the effect of diagonal shear reinforcement, the effect of inclined tensile steel reinforcement, and the compression chord influence. The verification of the proposed formula has been conducted on the experimental test results of 26 non-prismatic beams with or without openings at the same loading conditions. The results reflect that the predicted formula finds the shear capacity of non-prismatic beams with openings, it is co
... Show More