Six proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber. Different types and ratios of FRP rebar were used to reinforce these test beams. The study’s principle variables were the amount and type of flexural reinforcement (glass FRP and basalt FRP) and beam cross-sectional shape (rectangular and trapezoidal). The load-deflection behavior and ultimate load capacity of the beams were studied and compared with one another under flexural test with symmetrical two-point loading. The results show that increasing the reinforcement ratio resulted in higher post cracking flexural stiffness, and higher residual strength, as well as caused an increase in the first cracking load and ultimate load capacity ranged from 3 to 16.9%, and 4.6 to 7.3% respectively. When the GFRP rebars replaced by BFRP, the overall beams flexural performance showed outstanding improvements. Moreover the results indicate that increasing the top width of the beam cross section led to a significant enhancement in the first crack load ranged from 16 to 32.4%, also a remarkable increases in the ultimate load capacity in the range of 35.5 to 35.8% were indicated in the trapezoidal beams compared to rectangular beams. However the results show that the deflections were similar and were approximately 1.07–1.54 mm for all test beams. It is worth noting that the general flexural behavior of all the test beams indicated a ductile behavior with a gradual reduction in strength and high residual strength pre to failure due to proposing steel fiber presence.
Tests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreSlurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which
Experiments were conducted to study the behavior of the solid particles (proppant) inside the hydraulic fracture during the formation stimulation, and study the effect of the proppant concentration on the hydraulic fracturing process, which lead to bridge and screen-out conditions inside the fractures across the fracture width that restricts fracturing fluid to flow into the hydraulic fracture. The research also studies the effect of the ratio between the fracture size and the average particles diameter “proppant", on fracture bridging. In this study two ratios were considered β= 2 and 3 ,where β=Dt / Dp where: Dt= hydraulic fracture size (width) and Dp=Average particles diameter.
This work pr
... Show MoreThe importance of the present work falls on the pitting corrosion behavior investigation of 304 SS and 316 SS alloys in 3.5 wt% of aqueous solution bearing with chloride and bromide anion at different solutions temperature range starting from (20-50)oC due to the pitting corrosion tremendous effect on the economic, safety and materials loss due to leakage. The impact of solution temperatures on the pitting corrosion resistance at 3.5wt% (NaCl and NaBr) solutions for the 304 SS and 316 SS has been investigated utilizing the cyclic polarization techniques at the potential range -400 to1000 mV vs. SCE at 40 mV/sec scan rate followed by the surface characterization employing Scanning Electron&nbs
... Show MoreThe mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation
... Show MoreThis work involves three parts , first part is manufacturing different types of laminated below knee prosthetic socket materials with different classical laminated materials used in Baghdad center for prosthetic and orthotic (4perlon layers+2carbon fiber layer+4 perlon layers) , two suggested laminated materials(3perlon layers+2carbon fiber layer+3 perlon layers) and (3perlon layers+1carbon fiber layer+3 perlon layers) ) in order to choose perfect laminated socket . The second part tests (Impact test) the laminated materials specimens used in socket manufacturing in order to get the impact properties for each socket materials groups using an experimental rig designed especially for this purpose. The interface pressure between
... Show MoreIn Incremental sheet metal forming process, one important step is to produce tool path, an
accurate tool path is one of the main challenge of incremental sheet metal forming
process. Various factors should be considered prior to generation of the tool path i.e.
mechanical properties of sheet metal, the holding mechanism, tool speed, feed rate and
tool size. In this work investigation studies have been carried out to find the different tool
path strategies to control the twist effect in the final product manufactured by single point
incremental sheet metal forming (SPIF), an adaptive tool path strategy was proposed and
examined for several Aluminum conical models. The comparison of the proposed tool path with t
This work investigates experimentally the effect of using a skirt with a square foundation of 100 mm width resting on dry gypseous soil (i.e., loose soil with 33% relative density), and subjected to an inclined load. Previous works did not study the use square skirted foundation rested on gypseous soil and subjected to inclined load. The investigated soil was brought from Tikrit city with 59% gypsum content. Standard physical and chemical tests on selected soil were carried out. Model laboratory tests were carried out to determine the effect of using a skirt with a square foundation on the load-settlement behavior of gypseous soil and subjected to inclined load with various Skirt depth (Ds) to foundation width (B) ratio
... Show MoreThe galvanic corrosion of the (Cu - Fe), (Cu - Zn) and (Fe - Zn) couples have been investigated in 3.5% NaCl solution, 40ºC, different velocities (Re = 5000, 10000 and 15000) and different area ratio’s of cathode to anode (AR= 0.5,1 and 2), by using commercial metal pipe (cylindrical tube).The Zero Resistance Ammeter has been used to measure the galvanic current (Ig) and galvanic potential (Eg) with time. The galvanic current density increases with increasing velocity (Re) and the area ratio (AR). The galvanic potential (Eg) is shifted to less negative with increasing velocity (Re) and the area ratio (AR). A statistical relations for the galvanic current density and galvanic potential as a function of (Re). and the area ratio had been
... Show More