Two ligand ortho-amino phenyl thio benzyl (L1) and 1,3 bis (ortho - amino phenyl thio ) acetone (L2) and their complexes have been prepared and characterized . The L1 ligand is lossing phenyl group on complexcation and forming 1,2 bis (ortho - amino phenyl thio ) ethane L3 and this tetrahedrally coordinated to the metal ion ( M+2 = Ni , Cu , Cd ) and octahedrally coordinated with mercury and cobalt ions , while the ligand L2 is behave as tridentate ligand forming octahedrally around chrome metal ion . Structural , diagnosis were established by i.r , Uv- visible , conductivity elemental analysis and (mass spectra , H nmr spectra for( L1 , L2 ) .
A niger, a fungus which doesn't have high ability to production lipid, this fungus has been select to investigate the non oleaginicity. In this search, there are explorations about: i) growth profile ii) enzymes profile iii) isoforms. Growth profile shows that this fungus doesn't have ability to accumulate lipid more than 6% while bio mass are around 10g/l in spite of the presence of glucose in the media till the end of cultivation time and excision of nitrogen within 24 hrs. In enzyme study, we investigate all lipogenic enzymes Malic enzyme (ME), Fatty acid synthase (FAS), ATP: Citrate lays (ACL), NAD+ isocitrate dehydrogenase (NAD+ICDH), Glucose-6-phosphate (G6PD), and 6-phosphogluconate dehydrogenase (6PGD), all these enzymes show, ac
... Show MoreThis study including synthesis of some new Schiff bases compounds [1‐6] from the reaction of Sulfamethoxazole drug with some aromatic aldehydes in classical Schiff base method then treatment Schiff bases with succinic anhydride to get oxazepines rings [7-11]These derivatives were characterized by melting point, FT‐IR, 1H NMR and mass spectra. Some of synthesized compounds were evaluated in vitro for their antibacterial activities against three kinds of pathogenic strains Staphylococcus aureus, Escherichia coli
A series of overbased magnesium fatty acids such as caprylate, caprate, laurate, myristate, palmitate, stearate and oleate) were synthesized by the reaction of the fatty acids with active – 60 magnesium oxide and carbon dioxide (CO2) gas at 60 oC in the presence of ammonia solution as catalyst, toluene / ethanol solvent mixture (9:1vol/vol) was added.
The prepared detergent additives were characterized by FTIR, 1HNMR and evaluated by blending each additive in various concentrations with medium lubricant oil fraction (60 stock) supplied by Iraqi Midland Refineries Company. The total base number (TBN, mg of KOH/g) was determined, and the results of TBN were treated by using two-way analysis of variance (ANOVA) test. It was found that
Pyridine-2, 6-dicarbohydrazide comp (2) was synthesized from ethanolic solution of diethyl pyridine-2, 6- dicarboxylate comp (1) with excess of hydrazine hydrate. Newly five polymers (P1-P5) were synthesized from reaction of pyridine-2, 6-dicarbohydrazide comp (2) with five different di carboxylic acid in the presence of poly phosphoric acid (PPA). The antibacterial activity of the synthesized polymers was screened against some gram positive and gram negative bacteria. Antifungal activity of these polymers was evaluated in vitro against some yeast like fungi such as albicans (candida albicans). Polymers P3, P4 and P5 exhibited highest antibacterial and antifungal against all microorganisms under test.
In recent years , the interest in gold (III) species have gained more and more attention for cancer chemotherapy , this was stimulating by the possibility to develop new agents with mode of action and clinical profile different from the established platinum metalodrugs.
With this frame, recently new square planar Au(III) complexes (Au(L)(L')n); where L=SCH2COO- ; L'=HSCH2COO- had been synthesized with S/O – donor ligands.
In this article and by the aim to replace, one of (L') ligand by anion chloride ligand (which supposedly more relevant for the biodistribution of the compound than for its pharmacodynamic effects), new complex (Au(L')
Complexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4- aminoantipyrine (4-AAP) and tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3). The prepared complexes were characterized using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the two ligands and their complexes against three selected type of bacteria were also examined. The general compositions of the complexes are found to be [M(4-AAP)2(PBu3)2] Cl2 . Where M= Co(II),Ni(II),Cu(II)and Zn(II). Some of the complexes exhibit good bacterial activities. From the obtained data the octahedral structures have suggested for all prepare
... Show MoreThis study was aimed to produce AuNPs biologically using Klebsiella pneumoniae and study their synergistic effect with some antibiotics.Technologies of nanoparticles are quick and are employed in many applications in biomedicine. The potential of metallic nanoparticle as an anti-microbial agent is greatly investigated which considered as an alternative method to reduce the challenges of multi-drug resistance microbes. The present study discusses the novel approach to synthesize nanoparticles involving eco-friendly synthesis of gold nanoparticles using Klebsiella pneumoniae and study their effect as antimicrobial spectrum .Also study synergism effect of gold nanoparticles with antibiotic against Acinetobacter baumannii. These approac
... Show MoreA New ligand, N-(2-oxo-1,2- Dihydropyrimidin-4- ylcarbamothioyl) Acetamide (DPA) was prepared by reaction of iso thiosyanate derivative with Cytosine. The ligand has been characterized through elemental analysis, H1 NMR, C13NMR, FT-IR, and UV Visible spectra, such ligand’s transition metal complexes have been characterized through conductivity measurement, FT-IR, UV Visible spectra and magnetic susceptibility, all the complexes of this ligand are solid crystal and molar ratio (2:1) (ligand: metal). The form of molecular for these complexes octa hedral. The general formula [M(DPA)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).