In this study, we tackle the understudied area of Artificial Intelligence (AI) and its role in examining how modern revolutions may affect political systems across the Middle Eastern region. despite hundreds of studies documenting Middle Eastern uprisings over the past three decades, there has been little effort to harness AI to better understand or predict these multifaceted events. This study seeks to address this gap by assessing the performance of AI-intelligence in analyzing (broadly) revolutionary processes and their effects on regional political systems. The research uses a mixedmethod methodology that involves a systematic literature review of contemporary scholarly articles, and an analytics study using AI tools. Our results show that AIdriven sentiment analysis can accurately track shifts in public opinion over the course of an entire revolution with a 40% rise in level of positive sentiment during peak protest periods, then a 25% decline post-revolution. Topic modeling found a 20% increase in discourse about political representation and a 15% decrease in topics related to security post-revolution. Statistical significance was achieved (R2 = 0.85) in predictively modeling political stability and was able to outperform traditional statistical approaches by a factor of 30%. Such results also highlight the considerable promise of AI over traditionally human-based means for improving political analysis within the regi on.
Dye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the was
... Show MoreABSTRACT
Learning vocabulary is a challenging task for female English as a foreign language (EFL) students. Thus, improving students’ knowledge of vocabulary is critical if they are to make progress in learning a new language. The current study aimed at exploring the vocabulary learning strategies used by EFL students at Northern Border University (NBU). It also aimed to identify the mechanisms applied by EFL students at NBU University to learn vocabulary. It also aimed at evaluating the approaches adopted by EFL female students at Northern Border University (NBU) to learn a language. The study adopted the descriptive-analytical method. Two research instruments were developed to collect data namely, a survey qu
... Show MoreABSTRACT Background: Viral hepatitis places a heavy burden on the health care. Large number of patient with bleeding disorders has chronic hepatitis C infection, while few are chronic carriers of hepatitis B virus. Aims of study: evaluate the prevalence of HBV, HCV infection among patient with Von Willebrand disease and to find factors that associated with the chance of getting the infection.
The current study used extracts from the aloe vera (AV) plant and the hibiscus sabdariffa flower to make Ag-ZnO nanoparticles (NPs) and Ag-ZnO nanocomposites (NCs). Ag/ZnO NCs were compared to Ag NPs and ZnO NPs. They exhibited unique properties against bacteria and fungi that aren't present in either of the individual parts. The Ag-ZnO NCs from AV showed the best performance against E. coli, with an inhibition zone of up to 27 mm, compared to the other samples. The maximum absorbance peaks were observed at 431 nm and 410 nm for Ag NPs, at 374 nm and 377 nm for ZnO NPs and at 384 nm and 391 nm for Ag-ZnO NCs using AV leaf extract and hibiscus sabdariffa flower extract, respectively. Using field emission-scanning electron microscopes (FE-
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreThe variation in wing morphological features was investigated using geometric morphometric technique of the Sand Fly from two Iraqi provinces Babylon and Diyala . We distributed eleven landmarks on the wings of Sand Fly species. By using the centroid size and shape together, all species were clearly distinguished. It is clear from these results that the wing analysis is an essential method for future geometric morphometry studies to distinguish the species of Sand Flies in Iraq.