In this study, we tackle the understudied area of Artificial Intelligence (AI) and its role in examining how modern revolutions may affect political systems across the Middle Eastern region. despite hundreds of studies documenting Middle Eastern uprisings over the past three decades, there has been little effort to harness AI to better understand or predict these multifaceted events. This study seeks to address this gap by assessing the performance of AI-intelligence in analyzing (broadly) revolutionary processes and their effects on regional political systems. The research uses a mixedmethod methodology that involves a systematic literature review of contemporary scholarly articles, and an analytics study using AI tools. Our results show that AIdriven sentiment analysis can accurately track shifts in public opinion over the course of an entire revolution with a 40% rise in level of positive sentiment during peak protest periods, then a 25% decline post-revolution. Topic modeling found a 20% increase in discourse about political representation and a 15% decrease in topics related to security post-revolution. Statistical significance was achieved (R2 = 0.85) in predictively modeling political stability and was able to outperform traditional statistical approaches by a factor of 30%. Such results also highlight the considerable promise of AI over traditionally human-based means for improving political analysis within the regi on.
The current study is based on previous findings, where corporate governance (CG) significantly increased corporate social responsibility (CSR) to enhance transparency while reducing the tendency of corporate management to engage in earnings management (EM). A sample of 11 Iraqi banks listed on the Iraq Stock Exchange from 2010 to 2020 was selected. The CG was included in the board size and board independence apart from the variables of Chief Executive Officer (CEOs) gender, majority shareholder ownership, foreign ownership, and institutional ownership. The CSR included the wage growth rate, bank contribution growth rate for social security, training programmes, subsidies, environmental protection, and bank compliance with the law. Specifica
... Show MoreThe lead-acid battery has become so dependable in its used applications of automobile starting, emergency lighting and telecommunications, which left an impression that no further investigation is necessary or desirable. While there has been slow continuous improvements in lead-acid battery performance and mainly limited to design and material engineering. This work is mainly devoted to the properties of the active mass of the positive electrode and the acid/water ratio during the manufacturing process. A field study is carried out at the State Battery Manufacturing Company located in Baghdad, to prepare batches of lead mono-oxide with predefined quantities of liquid additives (i.e. sulfuric acid and water). Quality control and laborator
... Show More. The concepts of structural flexibility became one of the important goals in the design phases to reach high performance in architecture. The pioneering projects and ideas that linked architecture with technologies and scientific innovations appeared, with the aim of reaching projects that mix the concepts of flexibility with the development of machine thought and modern technology to meet the functional, environmental, and aesthetic requirements for human wellbeing. The aim of this paper is to identify the mechanisms used in order to reach flexible structural systems capable of accommodating technological changes and developments. The research hypothesizes that the structural design according to the concepts of flexibility achieves high s
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreThe research aims to know the effectiveness of a training program based on multiple intelligence theory in developing literary thinking among students of the Arabic Language Department at Ibn Rushd School of Humanities and to achieve the goal of research, the Safaris Research Institute, and the research community of Arabic language students in the Faculty of Education the third section of Arabic Language: The research sample consists of (71) students. Divided into (35) students in the experimental group and (36) students in the control group, the researcher balanced between the two groups with variables (intelligence, testing of tribal literary thinking, and time age in months), and after using the T-test for two independent samples, the
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show More