Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiments reveal unique patterns in algorithmic behaviors by workload. In the 15-task and 5-node scenario, the GA and PSO algorithms outclass all others, completing 100 percent of tasks before deadlines, Task 5 was a bane to the ACO algorithm. The study proposes a more extensive system that promotes an adaptive algorithmic approach based on workload characteristics. Numerically, the GA and PSO algorithms triumphed completing 100 percent of tasks before their deadlines in the face of 10 tasks and 5 nodes, while the ACO algorithm stumbled on certain tasks. As it is stated in the study, The above-mentioned system offers an integrated approach to ill-structured problem of task scheduling and resource allocation. It offers an intelligent and aggressive scheduling scheme that runs asynchronously when a higher number of tasks is submitted for the completion in addition to those dynamically aborts whenever system load and utilization cascade excessively. The proposed design seems like full-fledged solution over project scheduling or resource allocation issues. It highlights a detailed method of the choice of algorithms based on semantic features, aiming at flexibility. Effects of producing quantifiable statistical results from the experiments on performance empirically demonstrate each algorithm performed under various settings.
This paper displays a survey about the laboratory routine core analysis study on ten sandstone core samples taken from Zubair Reservoir/West Quarna Oil Field. The Petrophysical properties of rock as porosity, permeability, grain's size, roundness and sorting, type of mineral and volumes of shales inside the samples were tested by many apparatus in the Petroleum Technology Department/ University of Technology such as OFITE BLP-530 Gas Porosimeter, PERG-200TM Gas Permeameter and liquid Permeameter, GeoSpec2 apparatus (NMR method), Scanning Electron Microscopy (SEM) and OFITE Spectral Gamma Ray Logger apparatus. By comparing all the results of porosity and permeability measured by these instruments, it is clear a significant vari
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreThis deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
Is in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show Moreھدف البحث الـــــى : ١ -إعداد تدریبات القوة الارتدادیة في وسطین متباینین على بعض المؤشرات الفسیولوجیة لتطویر القوة الانفجاریة ودقة مھارتي الأرسال والضرب الساحق بالكرة الطائرة . ٢ -التعرف على تأثیر تدریبات القوة الارتدادیة في وسطین متباینین على بعض المؤشرات الفسیولوجیة لتطویر القوة الانفجاریة.. ٣ -التعرف على تأثیر تدریبات القوة الارتدادیة في وسطین متباینین على دقة مھارتي الأرسال والضرب الساحق بالكرة الطائرة
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using