The study evaluated the recovery performance of any home herbs group as first aid in some emergency cases. The study involved 10 items of herbs (chamomile, black pepper, cloves, cinnamon, and anise) which used in acute cases such as cold, colic, inflammation of the intestine and tonsillitis, and (hibiscus, catnip, dried lime, cress seed, and ginger) were used for chronic cases such as hypertension, cardiovascular disease, and arthritis. The results showed the herbs had healing power and efficiency in the primary remedy for the above-mentioned diseases. The side effects, the contradictions, and the overdoses of these substances were discussed. It was concluded that home herbs could be used for treatment in emergency cases until moder
... Show MoreExplainable Artificial Intelligence (XAI) techniques enable transparency and trust in automated visual inspection systems by making black-box machine learning models understandable. While XAI has been widely applied, prior reviews have not addressed the specific demands of industrial and medical inspection tasks. This paper reviews studies applying XAI techniques to visual inspection across industrial and medical domains. A systematic search was conducted in IEEE Xplore, Scopus, PubMed, arXiv, and Web of Science for studies published between 2014 and 2025, with inclusion criteria requiring the application of XAI in inspection tasks using public or domain-specific datasets. From an initial pool of studies, 75 were included and categorized in
... Show MoreBackground: Although radiological diagnostic studies (RDS) are an important and acceptable part of medical practice, it is not without hazards. It is associated with increased risk of cancer. Unfortunately the typical and safe dose of each radiological examination is not known. Most of our knowledge of cancer risk comes from studies of survivors of those exposed to whole body radiation from atomic bomb in Hiroshima & Nagasaki, jobs associated with radiation exposure, Chernobyl survivors & patients treated with radiation therapy for cancer and other diseases.
Objectives To estimate radiation dose received by patients from diagnostic radiological examinations and lifetime
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show Morelevel of effectiveness of Glutathione - S - Transferees (GST), Glutathione peroxides (GPX),Malondialdehyde (MDA) the product of lipid peroxidation and some trace elements ( zinc,seleinum,iron ,copper ) had been measured in sera of (50) women with breast disease.which had been divided to : Control group (25),The first group (A) benign breast tumors (25),the second group (B) breast cancer (25). The results showed a clear moral high level of Glutathione - S - Transferees (GST), Glutathione peroxidase (GPX) , and Malondialdehyde (MDA) level in breast cancer group while a slight increase were observed in the levels of these enzymes and(MDA) in benign breast group. A significant reduction was evident in the levels of selenium and zinc
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreToday, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculate
... Show More