The current research is a spectroscopic study of Coumarin 334 dissolved in methanol. The range of concentrations of the prepared stock solution was (3.39x10-9 to 2.03x10-8) M. Some optical characteristics of this dye were investigated such as absorbance and transmission spectra, absorption coefficient, refractive and extinction coefficients, oscillation and dispersion energies, and energy band gap. The absorbance spectra were recorded at 452 nm using Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) which depends on increasing the path length of the traveling light from the source to the detector. The minimum absorbance amount was 0.07 with a low concentration of 3.39x10-9 M. As a result, the ot
... Show MoreA statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
Fast-dissolving films are one of the interested delivery systems for oral solid dosage forms to overcome swallowing difficulty for geriatric and pediatric patients. Zafirlukast (ZLK) is one of the most commonly used oral medication for treatment of asthmatic patients particularly mild to moderate cases. Oral fast dissolving films of ZLK were prepared using two different filming forming polymers, hydroxypropyl methylcellulose (HPMC) and sodium carboxymethyl cellulose (SCMC). Different concentrations of the 2 polymers were used to prepare 10 formulas. Other excipients were also added at various ratios to produce 10 different formulations. These were maltodextrin, crosspivodone, polyvinylpyrrolidone (PVP), and banana powder. In vitro c
... Show MoreThe problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show More