This article is an endeavour to highlight the relationship between social media and language evolution. It reviews the current theoretical efforts on communication and language change. The descriptive design, which is theoretically based on technological determision, is used. The assumption behind this review is that the social media plays a significant role in language evolution. Moreover, different platforms of social media are characterized by being the easiest and fastest means of communication. It concludes that the current theoretical efforts have paid much attention to the relationship between social media and language evolution. Such efforts have highlighted the fact that social media platforms are awash with a lot of acronyms, cyber slangs, initialisms, morphological shortenings, etc. Much importantly, previous research has suggested that the larger the network size is, the more will be its effect on language evolution.
Retained soft tissue foreign bodies following injuries are frequently seen in the Emergency and Plastic Surgery practice. The patients with such presentations require a watchful and detailed clinical as- sessment to overcome the anticipant possibility of missing them. However, the diagnosis based on the clinical evaluation is usually challenging and needs to be supported by imaging modalities that are suboptimal and may fail in identifying some types of foreign bodies. Owing to that, serious complications such as chronic pain, infection, and delayed wound healing can be faced that necessitate a prompt intervention to halt those detrimental consequences. The classical method of removal is a surgical exploration which is not free of risks.
... Show MoreTreatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was mo
In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.
Objective :.
1-Find out the prevalence of alcohol and drugs addiction in two different years before and after the last
war i.e. in 2002 and in 200. 2-Study the association between the addiction
and some variables. 3-Identify the prescribed drugs and other substances that
have been abused
Methodology : A retrospective study has been conducted involving the in-patients at addiction unit-IbnRushd
psychiatric hospital in Baghdad by applying the semi-structured form based on ICD-10 criteria
of addiction and dependency with the confirmation of the specialist psychiatrist diagnosis of
dependency. Data concerning each patient admitted in the hospital was gathered to have an idea about
the problem of addiction (drugs an
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More